

DNS and the Web

15-744

David Andersen

DNS

� Purpose:

� Map from a human-readable name to a (human-

unfriendly) IP address

� Let's look at a bit of history first...

HOSTS.TXT

� In the beginning, there was hosts.txt

� Every host on the Internet downloaded it

periodically from SRI-NIC or from a friend

� As the Internet grew,

� so did the file

� so did the # of people who had to download the file

� so did the # of updates to a central service

� so did the pain.

Centralized service?

� The usual motherhood & apple pie problems:

� Single point of failure

� Traffic volume

� Poor locality

� Scaling

1-15-00 5

Domain Name System Goals

� Basically building a wide area distributed database
� Scalability
� Decentralized maintenance
� Robustness
� Global scope

� Names mean the same thing everywhere

� Don’t need
� Atomicity

� Strong consistency
� (Note how very important this is! CAP tradeoff...)

1-15-00 6

DNS Records

RR format: (class, name, value, type, ttl)

• DB contains tuples called resource records (RRs)
• Classes = Internet (IN), Chaosnet (CH), etc.
• Each class defines value associated with type

FOR IN class:

� Type=A
� name is hostname

� value is IP address

� Type=NS
� name is domain (e.g. foo.com)

� value is name of authoritative

name server for this domain

• Type=CNAME
• name is an alias name for

some “canonical” (the real)

name

• value is canonical name

• Type=MX
• value is hostname of

mailserver associated with

name

1-15-00 7

DNS Design: Hierarchy
Definitions

root

edunet

org
ukcom

gwu ucb cmu bu mit

cs ece

cmcl

• Each node in hierarchy

stores a list of names that

end with same suffix
• Suffix = path up tree

• E.g., given this tree, where

would following be stored:
• Fred.com
• Fred.edu
• Fred.cmu.edu
• Fred.cmcl.cs.cmu.edu
• Fred.cs.mit.edu

1-15-00 8

DNS Design: Zone Definitions

root

edunet

org
ukcom

ca

gwu ucb cmu bu mit

cs ece

cmcl Single node

Subtree

Complete

Tree

• Zone = contiguous

section of name space
• E.g., Complete tree,

single node or subtree
• A zone has an associated

set of name servers

1-15-00 9

DNS Design: Cont.
� Zones are created by convincing owner node to

create/delegate a subzone
� Records within zone stored multiple redundant name

servers

� Primary/master name server updated manually

� Secondary/redundant servers updated by zone

transfer of name space
� Zone transfer is a bulk transfer of the “configuration” of a DNS

server – uses TCP to ensure reliability

� Example:
� CS.CMU.EDU created by CMU.EDU administrators

1-15-00 10

Servers/Resolvers
� Each host has a resolver

� Typically a library that applications can link to

� Local name servers hand-configured (e.g.
/etc/resolv.conf)

� Name servers
� Either responsible for some zone or…

� Local servers
� Do lookup of distant host names for local hosts
� Typically answer queries about local zone

1-15-00 11

DNS: Root Name Servers
� Responsible for

“root” zone
� Approx. dozen root

name servers

worldwide
� Currently {a-m}.root-

servers.net

� Local name servers

contact root servers

when they cannot

resolve a name
� Configured with well-

known root servers

1-15-00 12

DNS Message Format

Identification

No. of Questions

No. of Authority RRs

Questions (variable number of answers)

Answers (variable number of resource records)

Authority (variable number of resource records)

Additional Info (variable number of resource records)

Flags

No. of Answer RRs

No. of Additional RRs

Name, type fields

for a query

RRs in response

to query

Records for

authoritative

servers

Additional “helpful

info that may be

used

12 bytes

1-15-00 13

DNS Header Fields
� Identification

� Used to match up request/response

� Flags
� 1-bit to mark query or response

� 1-bit to mark authoritative or not

� 1-bit to request recursive resolution

� 1-bit to indicate support for recursive resolution

1-15-00 14

Typical Resolution

Client
Local

DNS server

root & edu

DNS server

ns1.cmu.edu

DNS server

www.cs.cmu.edu

NS ns1.cmu.eduwww.cs.cmu.edu

NS ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu

DNS

server

1-15-00 15

Typical Resolution
� Steps for resolving www.cmu.edu

� Application calls gethostbyname() (RESOLVER)

� Resolver contacts local name server (S1)

� S1 queries root server (S2) for (www.cmu.edu)

� S2 returns NS record for cmu.edu (S3)

� What about A record for S3?
� This is what the additional information section is for

(PREFETCHING)

� S1 queries S3 for www.cmu.edu

� S3 returns A record for www.cmu.edu

� Can return multiple A records � what does this
mean?

1-15-00 16

Lookup Methods

Recursive query:
� Server goes out and

searches for more info
(recursive)

� Only returns final answer
or “not found”

Iterative query:
� Server responds with as

much as it knows
(iterative)

� “I don’t know this name,
but ask this server”

Workload impact on choice?
� Local server typically

does recursive
� Root/distant server does

iterative requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6 authoritative name
server

dns.cs.umass.edu

intermediate name server

dns.umass.edu

7

8

iterated query

1-15-00 17

Workload and Caching
� What workload do you expect for different

servers/names?
� Why might this be a problem? How can we solve this problem?

� DNS responses are cached
� Quick response for repeated translations
� Other queries may reuse some parts of lookup

� NS records for domains

� DNS negative queries are cached
� Don’t have to repeat past mistakes
� E.g. misspellings, search strings in resolv.conf

� Cached data periodically times out
� Lifetime (TTL) of data controlled by owner of data
� TTL passed with every record

1-15-00 18

Typical Resolution

Client
Local

DNS server

root & edu

DNS server

ns1.cmu.edu

DNS server

www.cs.cmu.edu

NS ns1.cmu.eduwww.cs.cmu.edu

NS ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu

DNS

server

1-15-00 19

Subsequent Lookup Example

Client
Local

DNS server

root & edu

DNS server

cmu.edu

DNS server

cs.cmu.edu

DNS

server

ftp.cs.cmu.edu

ftp=IPaddr

ftp.cs.cmu.edu

1-15-00 20

Reliability
� DNS servers are replicated

� Name service available if ≥ one replica is up

� Queries can be load balanced between replicas

� UDP used for queries
� Need reliability � must implement this on top of UDP!

� Why not just use TCP?

� Try alternate servers on timeout
� Exponential backoff when retrying same server

� Same identifier for all queries
� Don’t care which server responds

1-15-00 21

Reverse Name Lookup
� 128.2.206.138?

� Lookup 138.206.2.128.in-addr.arpa

� Why is the address reversed?

� Happens to be www.intel-iris.net and
mammoth.cmcl.cs.cmu.edu � what will
reverse lookup return? Both?
• Should only return name that reflects address

allocation mechanism

1-15-00 22

Prefetching
� Name servers can add additional data to

any response
� Typically used for prefetching

� CNAME/MX/NS typically point to another host
name

� Responses include address of host referred to
in “additional section”

1-15-00 23

Root Zone
� Generic Top Level Domains (gTLD) = .com,

.net, .org, etc…
� Country Code Top Level Domain (ccTLD) =

.us, .ca, .fi, .uk, etc…
� Root server ({a-m}.root-servers.net) also

used to cover gTLD domains
� Load on root servers was growing quickly!
� Moving .com, .net, .org off root servers was

clearly necessary to reduce load � done Aug
2000

1-15-00 24

New gTLDs
� .info � general info
� .biz � businesses
� .aero � air-transport industry
� .coop � business cooperatives
� .name � individuals
� .pro � accountants, lawyers, and physicians
� .museum � museums
� Only new one actives so far = .info, .biz, .name

1-15-00 25

New Registrars
� Network Solutions (NSI) used to handle all

registrations, root servers, etc…
� Clearly not the democratic (Internet) way

� Large number of registrars that can create new
domains � However, NSI still handle root
servers

1-15-00 26

DNS Experience
� 23% of lookups with no answer

� Retransmit aggressively � most packets in trace for
unanswered lookups!

� Correct answers tend to come back quickly/with few
retries

� 10 - 42% negative answers � most = no name
exists
� Inverse lookups and bogus NS records

� Worst 10% lookup latency got much worse
� Median 85�97, 90th percentile 447�1176

� Increasing share of low TTL records � what is
happening to caching?

1-15-00 27

DNS Experience
� Hit rate for DNS = 80% � 1-

(#DNS/#connections)
� Most Internet traffic is Web
� What does a typical page look like? � average of 4-5

imbedded objects � needs 4-5 transfers � accounts
for 80% hit rate!

� 70% hit rate for NS records � i.e. don’t go to
root/gTLD servers
� NS TTLs are much longer than A TTLs
� NS record caching is much more important to

scalability
� Name distribution = Zipf-like = 1/xa

� A records � TTLs = 10 minutes similar to TTLs =
infinite

� 10 client hit rate = 1000+ client hit rate

1-15-00 28

The Web

� Assuming this is review...

� HTTP

� Stateless request/response protocol

� Almost always carried over TCP

�

� GET /foo/bar/index.html HTTP/1.0

header: value

header2: value

�

1-15-00 29

Stateless?

� Yup! No state maintained about client between

requests

� Might keep connection open (persistent

connections; performance improvement), but no

state.

� Cookies or other parameters used to communicate

state

1-15-00 30

Caching the Web

� Browsers cache things

� Can interpose a proxy cache

� Send GET http://www.example.com/ HTTP/1.1

� Cache management?

� Expires header

� GET-IF-MODIFIED-SINCE <date>

� Etags

� Entity tags; identify unique content

� (Since it might vary with cookies/user ID/etc)

1-15-00 31

Content Delivery Networks

� Client caches help clients and are optional

� CDNs are typically server-driven – clients have

no choice

� Server directs client to a particular replica

� Client retrieves content from replica, not original

server

� Major benefit of CDNs: Handling load and

popularity spikes

� Sub-benefit: Reduced page load times

1-15-00 32

CDN
� Replicate content on many servers
� Challenges

� How to replicate content

� Where to replicate content

� How to find replicated content

� How to choose among known replicas

� How to direct clients towards replica
� DNS, HTTP 304 response, anycast, etc.

� Akamai

1-15-00 33

Server Selection
� Service is replicated in many places in network
� How to direct clients to a particular server?

� As part of routing � anycast, cluster load balancing

� As part of application � HTTP redirect

� As part of naming � DNS

� Which server?
� Lowest load � to balance load on servers

� Best performance � to improve client performance
� Based on Geography? RTT? Throughput? Load?

� Any alive node � to provide fault tolerance

1-15-00 34

Routing Based
� Anycast

� Give service a single IP address

� Each node implementing service advertises
route to address

� Packets get routed from client to “closest”
service node
� Closest is defined by routing metrics
� May not mirror performance/application needs

� What about the stability of routes?

1-15-00 35

Routing Based
� Cluster load balancing

� Router in front of cluster of nodes directs packets to
server

� Can only look at global address (L3 switching)
� Often want to do this on a connection by connection

basis – why?
� Forces router to keep per connection state
� L4 switching – transport headers, port numbers

� How to choose server
� Easiest to decide based on arrival of first packet in exchange
� Primarily based on local load
� Can be based on later packets (e.g. HTTP Get request) but

makes system more complex (L7 switching)

1-15-00 36

Application Based
� HTTP supports simple way to indicate that Web

page has moved
� Server gets Get request from client

� Decides which server is best suited for particular client
and object

� Returns HTTP redirect to that server

� Can make informed application specific decision
� May introduce additional overhead � multiple

connection setup, name lookups, etc.
� While good solution in general HTTP Redirect

has some design flaws – especially with current
browsers?

1-15-00 37

Naming Based
� Client does name lookup for service
� Name server chooses appropriate server address
� What information can it base decision on?

� Server load/location � must be collected
� Name service client

� Typically the local name server for client

� Round-robin
� Randomly choose replica
� Avoid hot-spots

� [Semi-]static metrics
� Geography
� Route metrics
� How well would these work?

1-15-00 38

How Akamai Works
� Clients fetch html document from primary server

� E.g. fetch index.html from cnn.com

� URLs for replicated content are replaced in html
� E.g. replaced with

<img

src=“http://a73.g.akamaitech.net/7/23/cnn.com/af/x.gif”

>

� Client is forced to resolve aXYZ.g.akamaitech.net
hostname

1-15-00 39

How Akamai Works
� How is content replicated?
� Akamai only replicates static content

� Serves about 7% of the Internet traffic !

� Modified name contains original file
� Akamai server is asked for content

� First checks local cache

� If not in cache, requests file from primary

server and caches file

1-15-00 40

How Akamai Works
� Root server gives NS record for akamai.net
� Akamai.net name server returns NS record for

g.akamaitech.net
� Name server chosen to be in region of client’s name

server
� TTL is large

� G.akamaitech.net nameserver choses server in
region
� Should try to chose server that has file in cache - How

to choose?
� Uses aXYZ name and consistent hash
� TTL is small

1-15-00 41

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6

7

8

9

12

Get

index.h

tml

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

1-15-00 42

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

7

8

9

12

Get

index.h

tml

Get /cnn.com/foo.jpg

