Fair Queueing

Design space

» Buffer management:
— RED, Drop-Tail, etc.
« Scheduling: which flow to service at a
given time
—FIFO
— Fair Queueing

Scheduling

« Work-conserving:
— Link is never idle if there are packets to send
— Examples: FIFO, Fair Queueing

« Non-work conserving

— Examples: TDMA

Fairness Goals

« Allocate resources fairly

* |solate ill-behaved users

— Router does not send explicit feedback to
source

— Still needs e2e congestion control
« Still achieve statistical muxing
— One flow can fill entire pipe if no contenders

— Work conserving = scheduler never idles link
if it has a packet

A Caveat: Still need e2e

« Congestion collapse can still happen if you
have fair queueing (router-assisted
sharing)

TCP

10 Mbps
128 Kbps
Non-cong.

Ct’'d UDP

Example from Floyd and Fall, 1999

What does “fairness” divide
between?

« At what granularity?
— Flows, connections, domains?
* What if users have different RTTs/links/etc.
— Should it share a link fairly or be TCP fair?
 Basically a tough question to answer — typically
design mechanisms instead of policy
— User = arbitrary granularity
— Paper has a nice argument for (src, dst) pairs

Max-min Fairness (reminder)

* Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

« Formally:

* Resources allocated in terms of increasing
demand

* No source gets resource share larger than its
demand

» Sources with unsatisfied demands get equal share
of resource

Max-min Fairness Example
(reminder)

« Assume sources 1..n, with resource
demands X1..Xn in ascending order

« Assume channel capacity C.

— Give C/n to X1; if this is more than X1 wants,
divide excess (C/n - X1) to other sources:
each gets C/n + (C/n - X1)/(n-1)

— If this is larger than what X2 wants, repeat
process

Implementing Max-min Fairness

* Important point:
— Converge to some q, s.t.
» Flows with offered load ri < a getri
* Flows with load > a get a
— X i=1ton min(ri, a) =C (capacity)
* Generalized processor sharing
— Fluid fairness
— Bitwise round robin among all queues

* Why not simple round robin?
— Variable packet length & can get more service by sending
bigger packets
— Unfair instantaneous service rate
« What if arrive just before/after packet departs?

Bit-by-bit RR

« Multiple flows: clock ticks when a bit from
all active flows is transmitted - a “round”
— M = #bits/sec router can send, N = # active

flows
— dR/dt (the rate at which the round
#increases) is variable = u /' N

— Why count this way? # of rounds to send a
packet is independent of number of active
flows. Useful way of viewing things...

Bit-by-bit round robin

» Packet arrives in queue Q:
— It’s the ith packet in the queue
— It's p_i*q bits long
— When does it start being transmitted?
* If g empty, immediately: R(t)
* Else, just after prior pkt finishes: F_{i-1}"q
+ S_i*g = max(R(t), F_{i-1}"q)
— When does it complete?
 S_i*q +p_i"g (p_i"g rounds later...)
— Can compute the finish round of every packet in the
queue. (Even at the point when the packet is

enqueued). Note that we don’t know the actual finish
time, just the round #.

Packet-based Fair Queueing

« Simple: Send the packet with the smallest
finishing round #.

« Approximates bit-by-bit RR
— Why isn’t it exact? Preemption!

FQ lllustration

Flow 1
4
4
’ Flow 2
, 4
I/P ’
\ ~>
N
\
\
N
\
N \
4
Flow n

Variation: Weighted Fair Queuing (WFQ)

Bit-by-bit RR Example

Flow 1 Flow 2 Output

F=1
F=8
F=5 Flow 1 Flow 2
(arriving) transmitting Output
Cannot preempt packet F=1
currently being transmitted
F=2

Delay Allocation

* Reduce delay for flows using less than fair share
— Advance finish times for sources whose queues drain
temporarily
» Schedule based on B, instead of F,
- F, =P, +max (F_, A) 2> B, =P, + max (F,_,, A - d)
— If A, < F,, conversation is active and 8 has no effect

— If A, > F_,, conversation is inactive and § determines
how much history to take into account
* Infrequent senders do better when history is used

Fair Queuing Tradeoffs

* FQ can control congestion by monitoring flows
— Non-adaptive flows can still be a problem — why?

+ Complex state

— Must keep queue per flow
» Hard in routers with many flows (e.g., backbone routers)

» Flow aggregation is a possibility (e.g. do fairness per
domain)

« Complex computation
— Classification into flows may be hard
— Must keep queues sorted by finish times
— dR/dt changes whenever the flow count changes

Core-Stateless Fair Queuing

» Key problem with FQ is core routers
— Must maintain state for many (50-100k!) flows
— Must update state at Gbps line speeds

» CSFQ (Core-Stateless FQ) objectives

— Edge routers should do complex tasks since they
have fewer flows (1000s)

— Core routers can do simple tasks
* No per-flow state/processing - this means that core routers
can only decide on dropping packets not on order of
processing
+ Can only provide max-min bandwidth fairness not delay
allocation

Core-Stateless Fair Queuing

« Edge routers keep state about flows and
do computation when packet arrives

« DPS (Dynamic Packet State)

— Edge routers label packets with the result of
state lookup and computation

— Note: Generalizes beyond CSFQ!

» Core routers use DPS and local
measurements to control processing of
packets

Key ideas

DPS: Edges estimate arrival rate for each flow

(per-flow state)

Core routers use

— Estimated arrival rates from edge

— Internal measure of fair-share

— To generate a drop probability. Labels changed on
outbound flow with new post-drop arrival rate.

Estimation for fair-share value converges rapidly

Edge Router Behavior

Monitor each flow i to measure its arrival rate (r;)
— EWMA of rate

» t_i*k, |_i*k = arrival time, length of kth packet in flow i
— Non-constant EWMA constant

« T_i*k = interarrival (time since last pkt) (t_i*k —t_{i-1}"k)

» Constant: e where T, K = constant

* Rinew = (1 — const)* length/interarrival + const*(ri old)

* Helps adapt to different packet sizes and arrival patterns

— Intuition: Trusts the “old” values less as the time interval
increases (negative T)

Rate is attached to each packet

10

Core Router Behavior

Drop probability for packet = max(1- a/r, 0)

Track aggregate input A
Track accepted rate F(a)
Estimate fair share rate o

— Solve F(a) = C; but this is hard:

— Note: Increasing a does not increase load (F)
by N * Aa
— F(a) = 2, min(r;, a) = what does this look like?

(why?)

F vs. Alpha

C [linked capacity]

—
M r2

New alpha

| i |
r3 | old alpha

» alpha

11

Estimating Fair Share

* Need F(a) = capacity = C
— Can’'t keep map of F(a) values - would require per flow state
— If we're overutilized:
— Since F(a) is concave, piecewise-linear
+ F(0) =0 and F(a) = current accepted rate = F_
* F(a)=F/a
* F(0hew) =C 2 0y, = 0gq * CIF
— If underutilized:
* o =max_i(ri) (No drops at all)
* What if a mistake was made?
— Forced into dropping packets due to buffer capacity
— When queue overflows a is decreased slightly
— Note that this is an increase/decrease rule in disguise. ©

[

Other Issues

* Punishing fire-hoses — why?
— Easy to keep track of in a FQ scheme

« What are the real edges in such a
scheme?
— Must trust edges to mark traffic accurately

— Could do some statistical sampling to see if
edge was marking accurately

12

