Router Congestion Control:
RED, ECN, and XCP

Where we left off

Signal of congestion: Packet loss

Fairness: Cooperating end-hosts using
AIMD

— Next lecture: Enforcement for QoS, rate,
delay, jitter guarantees

But note: A packet drop is a very blunt
indicator of congestion

Routers know more than they’re telling...

What Would Router Do?

« Congestion Signaling:

— Drop, mark, send explicit messages
» Buffer management:

— Which packets to drop?

— When to signal congestion?
» Scheduling

— If multiple connections, which one’s packets to
send at any given time?

Congestion Signaling

» Drops (we’ve covered)

* In-band marking
— One bit (congested or not): ECN
— Multiple bits (how congested / how much
available): XCP
 Out-of-band notification

— |P Source Quench

» Problem: It sends more packets when things are
congested...

* Not widely used.

When to mark packets?

 Drop-tail:
— When the buffer is full
— The de-facto mechanism today
— Very easy to implement
— Causes packets to be lost in bursts

+ Can lose many packets from a single flow...
» Can cause synchronization of flows
— Keeps average queue length high
o Y full. > delay
— Note relation to FIFO (first-in-first out): a scheduling
discipline, NOT a drop policy, but they’re often
bundled

Active Queue Mgmt. w/RED

» Explicitly tries to keep queue small
— Low delay, but still high throughput under bursts
— (This is “power”: throughput / delay)
» Assumes that hosts respond to lost packets
* Technique:

— Randomization to avoid synchronization
* (Recall that if many flows, don’t need as much buffer space!)

— Drop before the queue is actually full

RED algorithm

If ga < min

— Let all packets through

If ga > max

— Drop all packets
If ga > min && ga < max

— Mark or dro

p w/probability p_a

How to compute ga? How to compute pa?

RED Operation

Max thresh

Min thresh

P(drop) R

1.0

max;

A

Average Queue Length

rh

1
ming, maxyy, Avg queue length

Computing ga

* What to use as the queue occupancy?
— Balance fast response to changes
— With ability to tolerate transient burps
— Special case for idle periods...

« EWMA to the rescue again...
—Qa=(1-wq)'ga+w_q*q

« But what value of wq?
— Back of the envelope: 0.002

— RED is sensitive to this value, and it’s one of the
things that makes it a bit of a pain in practice

— See http://www.aciri.org/floyd/red.html

Computing pa

* Pb via linear interpolation
— Pb=max_p* (ga—-min / max — min)
* Method 1: pa=pb
— Geometric random variable for inter-arrivals between
drops.
— Tends to mark in batches (= Sync)
* Method 2:
— Uniform r.v. X be uniformin {1, 2, ... 1/pb-1}
— Set pa = pb/(1-count * pb)

» Count = # unmarked packets since last mark

RED parameter sensitivity

* RED can be very sensitive to parameters
— Tuning them is a bit of a black art!

* One thing: “gentle” RED
—max_p<=pb<=1 as
— maxthresh <= qa <= 2*maxthresh
— instead of “cliff” effect. Makes RED more robust to

choice of maxthresh, max_p

« But note: Still must choose wq, minthresh...

« RED is not very widely deployed, but testing
against both RED and DropTail is very common
in research, because it could be.

“Marking”, “Detection”

 RED is “Random Early Detection”
— Could mean marking, not dropping
« Marking?
— DECDbit: “congestion indication” binary
feedback scheme.
— If avg queue len >thresh, set the bit

— If > half of packets marked, exponential
decrease, otherwise linear increase

Marking 2: ECN

In IP-land

— Instead of dropping a packet, set a bit

— If bit set, react the same way as if it had been dropped (but you
don’t have to retransmit or risk losing ACK clocking)

* Where does it help?
— Delay-sensitive apps, particularly low-bw ones
— Small window scenarios

* Some complexity:

— How to send in legacy IP packets (IP ToS field)

— Determining ECN support: two bits (one “ECN works”, one
“congestion or not”

— How to echo bits to sender (TCP header bit)
* More complexity: Cheating!
— We’ll come back to this later. :)

Beyond congestion indication

* Why do we want to do more?

» TCP doesn’t do so well in a few scenarios:

— High bandwidth-delay product environments
+ Additive increase w/1000 packet window
» Could take many RTTs to fill up after congestion

* “not a problem” with a single flow with massive buffers (in
theory)

+ areal problem with real routers and bursty cross-traffic
— Short connections
» TCP never has a chance to open its window
— One caveat: A practical work-around to many of
these problems is opening multiple TCP connections.
The effects of this are still somewhat unexplored with
regard to stability, global fairnes and efficiency, etc.

XCP

How does XCP Work?

Hne—=

Round Trip Time

Congestion Window

How Does an XCP Router Compute
the Feedback?

Congestion Controller

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by A

A ~ Spare Bandwidth
A ~ - Queue Size
So,

Fairness Controller

Goal: Divides A between
flows to converge to fairness

Looks at a flow's state in
Congestion Hea

Algorithm:
If A>0 = Divide A equally
between flows

If A< 0O = Divide A between
flows proportionally to their
current rates

Getting the devil out of the details ...

Congestion Controller

Theorem: System converges
to optimal utilization (i.e.,
stable) for any link bandwidth,
delay, number of sources if:

i1
and a2
42 g

No Parameter Tuning

O<a<

Fairness Controller

Need to estimate number of
flows N

N - E !
ot T x(Cwnd py | RTT)

No Per-Flow State

Apportioning feedback

« Tricky bit: Router sees queue sizes and
throughputs; hosts deal in cwnd. Must
convert.

» Next tricky bit: Router sees packets;
host’s response is the sum of feedback
received across its packets. Must
apportion feedback onto packets.

* Requirement: No per-flow state at router

XCP: Positive Feedback

 spare b/w to allocate
* N flows
 per-flow: A propto rtt

— Larger RTT needs more cwnd increase to add
same amount of b/w

» per-packet:
— # packets observed in time d ~ cwnd/rtt
— combining them: pi ~ spare/N * rtt"2 / cwnd

10

But must allocate to a flow

« How many packets does flow | send in time T?
— T*cwnd_I/RTT/I

+ So to count # of flows

— counter += 1/ (T * cwnd_pkt / RTT_pkt)

— every time you receive a packet

So: per-flow increase ~ spare / counter

This is a cute trick for statelessly counting the #

of flows.

Similar to tricks used in CSFQ (Core Stateless
Fair Queueing), which we’ll be hitting next time

XCP decrease

« Multiplicative Decrease

— cwnd = beta * cwnd_old (same beta for all
flows)

— This is like the reverse of the slow-start
mechanism
+ Slow start: Each ACK, increase cwnd by 1
— Results in exponential _increase
+ XCP decrease: Each packet, decrease cwnd

« BUT: Must account for rtt_I = avg RTT, so
normalize
— ni = total decrease * (rtt_I / avg_rtt)

11

XCP benefits & issues

Requires “policers” at edge if you don’t trust
hosts to report cwnd/rtt correctly

— Much like CSFQ...

Doesn’t provide much benefit in foday’s common
case

— But may be very significant for tomorrow’s.

— High bw*rtt environments (10GigE coming to a
desktop near you...)

— Short flows, highly dynamic workloads

Cool insight: Decoupled fairness and
congestion control

Pretty big architectural change

Beyond RED

What if you want to use RED to try to
enforce fairness?

12

CHOKe

* CHOse and Keep/Kill (Infocom 2000)

— Existing schemes to penalize unresponsive flows
(FRED/penalty box) introduce additional complexity

— Simple, stateless scheme
* During congested periods
— Compare new packet with random pkt in queue
— If from same flow, drop both
— If not, use RED to decide fate of new packet

CHOKe

« Can improve behavior by selecting more
than one comparison packet

— Needed when more than one misbehaving
flow

» Does not completely solve problem

— Aggressive flows are punished but not limited
to fair share

— Not good for low degree of multiplexing -
why?

13

Stochastic Fair Blue

+ Same objective as RED Penalty Box
— ldentify and penalize misbehaving flows

» Create L hashes with N bins each
— Each bin keeps track of separate marking rate (p,,)
— Rate is updated using standard technique and a bin size
— Flow uses minimum p,, of all L bins it belongs to

— Non-misbehaving flows hopefully belong to at least one bin
without a bad flow
» Large numbers of bad flows may cause false positives

Stochastic Fair Blue

 False positives can continuously penalize
same flow

 Solution: moving hash function over time
— Bad flow no longer shares bin with same flows

— Is history reset > does bad flow get to make
trouble until detected again?
* No, can perform hash warmup in background

14

Acknowledgements

» Several of the XCP slides are from Dina
Katabi’ SIGCOMM presentation slides.

« http://www.ana.lcs.mit.edu/dina/XCP/

15

