
1

Router Congestion Control:
RED, ECN, and XCP

Where we left off

• Signal of congestion: Packet loss
• Fairness: Cooperating end-hosts using

AIMD
– Next lecture: Enforcement for QoS, rate,

delay, jitter guarantees
• But note: A packet drop is a very blunt

indicator of congestion
• Routers know more than they’re telling…

2

What Would Router Do?

• Congestion Signaling:
– Drop, mark, send explicit messages

• Buffer management:
– Which packets to drop?
– When to signal congestion?

• Scheduling
– If multiple connections, which one’s packets to

send at any given time?

Congestion Signaling

• Drops (we’ve covered)
• In-band marking

– One bit (congested or not): ECN
– Multiple bits (how congested / how much

available): XCP
• Out-of-band notification

– IP Source Quench
• Problem: It sends more packets when things are

congested…
• Not widely used.

3

When to mark packets?
• Drop-tail:

– When the buffer is full
– The de-facto mechanism today
– Very easy to implement
– Causes packets to be lost in bursts

• Can lose many packets from a single flow…
• Can cause synchronization of flows

– Keeps average queue length high
• ½ full.  delay

– Note relation to FIFO (first-in-first out): a scheduling
discipline, NOT a drop policy, but they’re often
bundled

Active Queue Mgmt. w/RED

• Explicitly tries to keep queue small
– Low delay, but still high throughput under bursts
– (This is “power”: throughput / delay)

• Assumes that hosts respond to lost packets
• Technique:

– Randomization to avoid synchronization
• (Recall that if many flows, don’t need as much buffer space!)

– Drop before the queue is actually full

4

RED algorithm

• If qa < min
– Let all packets through

• If qa > max
– Drop all packets

• If qa > min && qa < max
– Mark or drop w/probability p_a

• How to compute qa? How to compute pa?

RED Operation
Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

5

Computing qa
• What to use as the queue occupancy?

– Balance fast response to changes
– With ability to tolerate transient burps
– Special case for idle periods…

• EWMA to the rescue again…
– Qa = (1 – wq)*qa + w_q * q

• But what value of wq?
– Back of the envelope: 0.002
– RED is sensitive to this value, and it’s one of the

things that makes it a bit of a pain in practice
– See http://www.aciri.org/floyd/red.html

Computing pa

• Pb via linear interpolation
– Pb = max_p * (qa – min / max – min)

• Method 1: pa = pb
– Geometric random variable for inter-arrivals between

drops.
– Tends to mark in batches ( Sync)

• Method 2:
– Uniform r.v. X be uniform in {1, 2, … 1/pb-1}
– Set pa = pb/(1-count * pb)

• Count = # unmarked packets since last mark

6

RED parameter sensitivity
• RED can be very sensitive to parameters

– Tuning them is a bit of a black art!
• One thing: “gentle” RED

– max_p <= pb <= 1 as
– maxthresh <= qa <= 2*maxthresh
– instead of “cliff” effect. Makes RED more robust to

choice of maxthresh, max_p
• But note: Still must choose wq, minthresh…
• RED is not very widely deployed, but testing

against both RED and DropTail is very common
in research, because it could be.

“Marking”, “Detection”

• RED is “Random Early Detection”
– Could mean marking, not dropping

• Marking?
– DECbit: “congestion indication” binary

feedback scheme.
– If avg queue len >thresh, set the bit
– If > half of packets marked, exponential

decrease, otherwise linear increase

7

Marking 2: ECN
• In IP-land

– Instead of dropping a packet, set a bit
– If bit set, react the same way as if it had been dropped (but you

don’t have to retransmit or risk losing ACK clocking)
• Where does it help?

– Delay-sensitive apps, particularly low-bw ones
– Small window scenarios

• Some complexity:
– How to send in legacy IP packets (IP ToS field)
– Determining ECN support: two bits (one “ECN works”, one

“congestion or not”
– How to echo bits to sender (TCP header bit)

• More complexity: Cheating!
– We’ll come back to this later. :)

Beyond congestion indication
• Why do we want to do more?
• TCP doesn’t do so well in a few scenarios:

– High bandwidth-delay product environments
• Additive increase w/1000 packet window
• Could take many RTTs to fill up after congestion
• “not a problem” with a single flow with massive buffers (in

theory)
• a real problem with real routers and bursty cross-traffic

– Short connections
• TCP never has a chance to open its window

– One caveat: A practical work-around to many of
these problems is opening multiple TCP connections.
The effects of this are still somewhat unexplored with
regard to stability, global fairnes and efficiency, etc.

8

XCP

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

 How does XCP Work?

9

How Does an XCP Router Compute
the Feedback?

Congestion Controller Fairness Controller
Goal: Divides Δ between
flows to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If Δ > 0 ⇒ Divide Δ equally
between flows
If Δ < 0 ⇒ Divide Δ between
flows proportionally to their
current rates

 MIMD AIMD

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by Δ
Δ ~ Spare Bandwidth
Δ ~ - Queue Size
So, Δ = α davg Spare - β Queue

Δ = α davg Spare - β Queue

2

24

0
2!"

#
! =<< and

Theorem: System converges
to optimal utilization (i.e.,
stable) for any link bandwidth,
delay, number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …
Congestion Controller Fairness Controller

No Parameter Tuning

Algorithm:
If Δ > 0 ⇒ Divide Δ equally between flows
If Δ < 0 ⇒ Divide Δ between flows
proportionally to their current rates

Need to estimate number of
flows N

! "
=

Tinpkts
pktpkt RTTCwndT

N
)/(

1

RTTpkt : Round Trip Time in header
Cwndpkt : Congestion Window in header
T: Counting Interval

No Per-Flow State

10

Apportioning feedback

• Tricky bit: Router sees queue sizes and
throughputs; hosts deal in cwnd. Must
convert.

• Next tricky bit: Router sees packets;
host’s response is the sum of feedback
received across its packets. Must
apportion feedback onto packets.

• Requirement: No per-flow state at router

XCP: Positive Feedback

• spare b/w to allocate
• N flows
• per-flow: Δ propto rtt

– Larger RTT needs more cwnd increase to add
same amount of b/w

• per-packet:
– # packets observed in time d ~ cwnd/rtt
– combining them: pi ~ spare/N * rtt^2 / cwnd

11

But must allocate to a flow
• How many packets does flow I send in time T?

– T * cwnd_I / RTT/I
• So to count # of flows

– counter += 1 / (T * cwnd_pkt / RTT_pkt)
– every time you receive a packet

• So: per-flow increase ~ spare / counter
• This is a cute trick for statelessly counting the #

of flows.
• Similar to tricks used in CSFQ (Core Stateless

Fair Queueing), which we’ll be hitting next time

XCP decrease

• Multiplicative Decrease
– cwnd = beta * cwnd_old (same beta for all

flows)
– This is like the reverse of the slow-start

mechanism
• Slow start: Each ACK, increase cwnd by 1

– Results in exponential _increase_
• XCP decrease: Each packet, decrease cwnd
• BUT: Must account for rtt_I != avg RTT, so

normalize
– ni = total decrease * (rtt_I / avg_rtt)

12

XCP benefits & issues
• Requires “policers” at edge if you don’t trust

hosts to report cwnd/rtt correctly
– Much like CSFQ…

• Doesn’t provide much benefit in today’s common
case
– But may be very significant for tomorrow’s.
– High bw*rtt environments (10GigE coming to a

desktop near you…)
– Short flows, highly dynamic workloads

• Cool insight: Decoupled fairness and
congestion control

• Pretty big architectural change

Beyond RED

• What if you want to use RED to try to
enforce fairness?

13

CHOKe

• CHOse and Keep/Kill (Infocom 2000)
– Existing schemes to penalize unresponsive flows

(FRED/penalty box) introduce additional complexity
– Simple, stateless scheme

• During congested periods
– Compare new packet with random pkt in queue
– If from same flow, drop both
– If not, use RED to decide fate of new packet

CHOKe

• Can improve behavior by selecting more
than one comparison packet
– Needed when more than one misbehaving

flow
• Does not completely solve problem

– Aggressive flows are punished but not limited
to fair share

– Not good for low degree of multiplexing 
why?

14

Stochastic Fair Blue
• Same objective as RED Penalty Box

– Identify and penalize misbehaving flows

• Create L hashes with N bins each
– Each bin keeps track of separate marking rate (pm)
– Rate is updated using standard technique and a bin size
– Flow uses minimum pm of all L bins it belongs to
– Non-misbehaving flows hopefully belong to at least one bin

without a bad flow
• Large numbers of bad flows may cause false positives

Stochastic Fair Blue

• False positives can continuously penalize
same flow

• Solution: moving hash function over time
– Bad flow no longer shares bin with same flows
– Is history reset does bad flow get to make

trouble until detected again?
• No, can perform hash warmup in background

15

Acknowledgements

• Several of the XCP slides are from Dina
Katabi’ SIGCOMM presentation slides.

• http://www.ana.lcs.mit.edu/dina/XCP/

