I 15-744: Comp

L-5 Congestion Control

uter Networking I

P
News Ve
|| S N . N . |

* Note problem set 1 update
» Part E: Please draw three RTTs after the loss,
not just one.
* Assigned reading
» [JK88] Congestion Avoidance and Control

* [CJ89] Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in
Computer Networks

L -4;10-7-04

© Srinivasan Seshan, 2004
— — e m— e m— —

l%i}\*;
N d
D\F/U
H o /5 Rs
Congestion ose
| I I I .
.~ 10Mbps
1.5 Mbps D
100 Mbps

+ Different sources compete for resources
inside network: Link b/w and queue space

* Why is it a problem?
« Sources are unaware of current state of resource
» Sources are unaware of each other

* In many situations will result in < 1.5 Mbps of
throughput (congestion collapse)

L -4;10-7-04

© Srinivasan Seshan, 2004
— — e m— e m—

bl

. K
Causes & Costs of Congestion s
| S N . N . L
» Four senders — multihop paths Q: What happens as rate
« Timeout/retransmit increases?
Host A tostB

|
| )
Host D <’> R1 EE
= RREH
R4 = Ao
Ej R3 .> o
NI
\VJI |NRARN!

L -4;10-7-04

© Srinivasan Seshan, 2004
— — e m— e m— —

=
%




Causes & Costs of Congestion vay
r— . - - -

Host A Host 8

cr2 %g M

—

3

@] Host D
<

AN
A, o

* When packet dropped, any “upstream

transmission capacity used for that packet
was wasted!

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

a8
]

N
o’ g

Other Congestion Collapse Causes
[ - -
* Fragments
* Mismatch of transmission and retransmission units
» Solutions

» Make network drop all fragments of a packet (early packet
discard in ATM)

» Do path MTU discovery
» Control traffic

» Large percentage of traffic is for control
» Headers, routing messages, DNS, etc.
+ Stale or unwanted packets
» Packets that are delayed on long queues
* “Push” data that is never used

N

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

. VA
Congestion Collapse josey
| I I I L
+ Definition: Increase in network load results in
decrease of useful work done
* Many possible causes
+ Spurious retransmissions of packets still in flight
+ Classical congestion collapse
» How can this happen with packet conservation
+ Solution: better timers and TCP congestion control
+ Undelivered packets
» Packets consume resources and are dropped elsewhere in
network
+ Solution: congestion control for ALL traffic
Msan Seshan 2004_ — _LAHOJA o _ 6
oy ~ La
Congestion Control and Avoidance {x
| I I I L
» Desirable properties:

+ Scalability:
« # flows, range of capacities, range of delays
* Do well in entire range!

« Efficiency: High network utilization
» Fairness
* Works-ness: avoids collapse!
» Congestion collapse is not just a theory

* Has been frequently observed in many
networks

© Srinivasan Seshan, 2004 L -4;10-7-04
— —




Fairness
|| S N . N .
» Jain’s fairness index

. f=(2x)2/n(Ex2)

* All x equal: 1
* k/n get service: k/n
* Max-min fairness
» No user receives more than their request, pi
+ No other allocation satisfying (1) has higher min
allocation
» condition 2 holds as we remove the minimal user &
reduce total resource accordingly
» aka: ui = MIN(u fair, pi)
* Goal: Something that works well enough.

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

Design questions

| I I I
» Congestion

* How is congestion signaled?
« Either mark or drop packets
* When is a router congested?
* Drop tail queues — when queue is full
» Average queue length — at some threshold
» Control questions:
* How do senders react to congestion?
* How do senders determine capacity for flow?

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

Objectives ey
| I I I L
» Simple router behavior
* Distributedness
« Efficiency: X, e = ZX;(t)
« Fairness: (2x,)?/n(Zx?)
» Power: (throughput*/delay)
» Convergence: control system must be
stable
Congrol 2 ey
| I I I L

» Upon congestion, flows must reduce rate
* How? Decrease algorithm

* If no congestion, flows might try sending more.
Increase algorithm.

* Let’s assume window-based flow control

+ sender maintains “cwnd”: # of unacknowledged
packets in the network at any time

» Transmission rate: cwnd / rtt
* (Alternate: Rate-based; equation-based)

© Srinivasan Seshan, 2004 L -4;10-7-04 12
— —




Linear Control VT

| I I I L
« Many different possibilities for reaction to
congestion and probing
» Examine simple linear controls
* Window(t + 1) = a + b Window(t)
+ Different a/b, for increase and ay/b for
decrease
» Supports various reaction to signals
* Increase/decrease additively
* Increased/decrease multiplicatively
* Which of the four combinations is optimal?

© Srinivasan Seshan, 2004 L -4;10-7-04 13
— e m— e m— e m— —
'l
oy e
/
Phase plots iy
e
N %
| I I I L

» What are desirable properties?
» What if flows are not equal?

h

Fairness Line

Overload

User 2’s
Allocation

X, Optimal point

Underutilization

Efficiency Line

>
User 1’s Allocation x;

© Srinivasan Seshan, 2004 L -4;10-7-04 15
— —

g E:\/D f 2
Phase plots o
| I I I L
« Simple way to visualize behavior of
competing connections over time
A
Faimness Line
User2’s
Allocation
Efficiency Line
User 1’s Allocation x; "
Msan Seshan 2004_ — _LAHOJA o _ 14
By ~ a
iy Qb R g
Additive Increase/Decrease o]
| I I I L

» Both X, and X, increase/decrease by the same
amount over time

» Additive increase improves fairness and additive
decrease reduces fairness

A

Fairness Line

T

User 2’s
Allocation T,
Xz

User 1’s Allocation x;

Efficiency Line

>

© Srinivasan Seshan, 2004 L -4;10-7-04 16
— —




7
oy e

Multiplicative Increase/Decrease v
- — — — — — — —

+ Both X, and X, increase by the same factor
over time
+ Extension from origin — constant fairness

A

Fairness Line

T

User 2’s
Allocation
Xz Ty

User 1’s Allocation x;

Efficiency Line

>

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

¥}

%

What is the Right Choice? oo
_— - - —— —

» Constraints limit us to AIMD
+ Can have multiplicative term in increase (MAIMD)
+ AIMD moves towards optimal point

Fairness Line

User 2’s
Allocation
X, X2

Efficiency Line

>

User 1’s Allocation x;

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

TCP and linear controls Zf&f
- - - - -
 Upon congestion:

s w(t+1)=a*w(t) O<a<1

» While probing
s w(t+1)=w(t)+b 0 <b <<wmax

 TCP sets a = 1/2, b = 1 (packet)

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

TCP Congestion Control e
| I I I L

» Motivated by ARPANET congestion collapse

» Underlying design principle: packet conservation

+ At equilibrium, inject packet into network only when one
is removed

+ Basis for stability of physical systems
+ Why was this not working?
+ Connection doesn’t reach equilibrium
» Spurious retransmissions
* Resource limitations prevent equilibrium

© Srinivasan Seshan, 2004 L -4;10-7-04
— —




7
oy
/

]

TCP Congestion Control - Solutions %7
| I I I L
» Reaching equilibrium

» Slow start
+ Eliminates spurious retransmissions

* Accurate RTO estimation

» Fast retransmit
» Adapting to resource availability

» Congestion avoidance

By z La

AIMD: Now you grok the sawtooth %7
| I I I L

« Distributed, fair and efficient

» Packet loss is seen as sign of congestion and
results in a multiplicative rate decrease
» Factor of 2

» TCP periodically probes for available bandwidth
by increasing its rate

P

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

23

TCP Congestion Control =53
| I I I L
« Changes to TCP motivated by
ARPANET congestion collapse
« Basic principles
« AIMD
» Packet conservation
» Reaching steady state quickly
» ACK clocking
Congestion Avoidance ey
| I I I L

« If loss occurs when cwnd = W

* Network can handle 0.5W ~ W segments

» Set cwnd to 0.5W (multiplicative decrease)
* Upon receiving ACK

* Increase cwnd by (1 packet)/cwnd

* What is 1 packet? - 1 MSS worth of bytes

* After cwnd packets have passed by >
approximately increase of 1 MSS

* Implements AIMD

© Srinivasan Seshan, 2004 L -4;10-7-04
— —




. . 7
Congestion Avoidance Sequence P
EOt I I I L/\D-D/ :

Sequence No E
M Packets |
@ Acks >
Time
By z La
Packet Conservation vay
I L

| I I
» At equilibrium, inject packet into network only
when one is removed
+ Sliding window and not rate controlled
+ But still need to avoid sending burst of packets >

would overflow links
» Need to carefully pace out packets (ack clocking)!

» Helps provide stability
* Need to eliminate spurious retransmissions

» Accurate RTO estimation
+ Better loss recovery techniques (e.g. fast retransmit)

» Congestion window helps to “pace” the
transmission of data packets
» In steady state, a packet is sent when an ack is

received
» Data transmission remains smooth, once it is smooth

2
oy e
i i : 4%
Congestion Avoidance Behavior Ry
- - - - -
Congestion
Window
A
/_ {/< _
>
. Time
Packet loss Cut Grabbing
+ Timeout Congestion back
Window Bandwidth
and Rate
© Srinivasan Seshan, 2004 L -4; 10-7-04 26
2
oy e
g F(D&\* 2
aval
- - - - -

* Self-clocking behavior
Pb
> | P
Sender Receiver
‘4&’ [T, A | “i,

L -4;10-7-04

L -4;10-7-04 27
—

© Srinivasan Seshan, 2004
— — e m—

© Srinivasan Seshan, 2004
— — e m—



Reachlng Steady State Zf{ I
] - —

» Doing AIMD is fine in steady state but

slow...
* How does TCP know what is a good initial

rate to start with?
» Should work both for a CDPD (10s of Kbps or
less) and for supercomputer links (10 Gbps and

growing)
* Quick initial phase to help get up to speed

(slow start)

L -4;10-7-04
e —

© Srinivasan Seshan, 2004
— — e m—

Ll
oy LA
VA
Slow Start Example josey
| I I I L
One RTT
OR _ i
+“—>
One pkt time
1R A
2R (23
4706
.
3R 4) (5 (6 (7
L8 /[10 [12 [1
L9 |/ 111131015
© Srinivasan Seshan, 2004 L -4;10-7-04

Slow Start Packet Pacing

* How do we get this
clocking behavior to
start?

* Initialize cwnd = 1
» Upon receipt of every
ack, cwnd = cwnd + 1
» Implications

+ Window actually
increases to W in RTT *

\ 4

log,(W)
» Can overshoot window
and cause packet loss

L -4;10-7-04

31

© Srinivasan Seshan, 2004
— — e m—

Slow Start Sequence Plot
| S N .

A

co"iEmEmEm ..

Sequence No

colEmEEmEER

CoNmmEm

omm

M Packets

@ Acks Time

L -4;10-7-04

© Srinivasan Seshan, 2004
— — e m—



7
oy e

Return to Slow Start vhes
- o - — — _—

« If packet is lost we lose our self clocking as
well
* Need to implement slow-start and congestion
avoidance together
* When timeout occurs set ssthresh to 0.5w
* If cwnd < ssthresh, use slow start
» Else use congestion avoidance

L -4; 10-7-04

© Srinivasan Seshan, 2004
— — e m— e m— —

[

© Srinivasan Seshan, 2004 L -4;10-7-04
—

TCP Modeling b
| N .. I .. I .. |

» Given the congestion behavior of TCP can we
predict what type of performance we should get?

* What are the important factors
* Lossrate
+ Affects how often window is reduced
« RTT
+ Affects increase rate and relates BW to window
« RTO
+ Affects performance during loss recovery
+ MSS

» Affects increase rate

© Srinivasan Seshan, 2004 L -4;10-7-04
—

35

Simple TCP Model ey
| I I I L
« Some additional assumptions

* Fixed RTT

* No delayed ACKs
* In steady state, TCP losses packet each

time window reaches W packets

* Window drops to W/2 packets

* Each RTT window increases by 1 packet->W/2
* RTT before next loss

+ BW = MSS * avg window/RTT = MSS * (W +
W/2)/(2*RTT)=.75*MSS *W /RTT

© Srinivasan Seshan, 2004 L -4;10-7-04
—




Simple Loss Model JoTe
| I I I L

* What was the loss rate?
» Packets transferred = (.75 W/RTT) * (W/2 *
RTT) = 3W2/8
* 1 packet lost - loss rate = p = 8/3W?2
« W=sqrt(8/(3 * loss rate))
s BW=.75*MSS*W/RTT
* BW=MSS/(RTT * sqrt (2/3p))

© Srinivasan Seshan, 2004 L -4;10-7-04 37
— —

TCP Friendliness ey
| S N . N . L

* What does it mean to be TCP friendly?
» TCP is not going away
* Any new congestion control must compete with TCP
flows
» Should not clobber TCP flows and grab bulk of link

» Should also be able to hold its own, i.e. grab its fair share, or it
will never become popular

* How is this quantified/shown?
» Has evolved into evaluating loss/throughput behavior
« If it shows 1/sqrt(p) behavior it is ok
» But is this really true?

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

TCP Performance vay
| S N . N . L

* Can TCP saturate a link?

» Congestion control

¢ Increase utilization until... link becomes
congested

* React by decreasing window by 50%
* Window is proportional to rate * RTT

» Doesn’t this mean that the network
oscillates between 50 and 100% utilization?

* No...this is *not* right!

© Srinivasan Seshan, 2004 L -4;10-7-04 39
— —

Summary Unbuffered Link Rﬁi
r— — — — — I — —

* The router can'’t fully utilize the link
« If the window is too small, link is not full
 If the link is full, next window increase causes drop
» With no buffer it still achieves 75% utilization

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

10



TCP Performance

| S N . N .
* In the real world, router queues play

important role
* Window is proportional to rate * RTT
* But, RTT changes as well the window

* Window to fill links = propagation RTT *
bottleneck bandwidth

« If window is larger, packets sit in queue on
bottleneck link

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

a8
]

'
N
o’ g

4

TCP Performance ey
| I I I L

+ If we have a large router queue - can get

» But, router queues can cause large delays

* How big does the queue need to be?
* Windows vary from W > W/2

* Must make sure that link is always full
+ W/2>RTT *BW

+ W=RTT * BW + Qsize

* Therefore, Qsize > RTT * BW

+ Delay?
» Varies between RTT and 2 * RTT

© Srinivasan Seshan, 2004 L -4;10-7-04 42
— —

Single TCP Flow

Router with large enough buffers for full link utilization
| I I ..

util = 0%

time

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

a8
]

'
N
o’ g

43

Important Lessons
| I I I L

* How does TCP implement AIMD?
« Sliding window, slow start & ack clocking

* How to maintain ack clocking during loss recovery ->
fast recovery

* Modern TCP loss recovery
* Why are timeouts bad?
* How to avoid them? - fast retransmit, SACK

* How does TCP fully utilize a link?
* Role of router buffers

© Srinivasan Seshan, 2004 L -4;10-7-04 44
— —

11



Additional Slides for the Curious

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

Example

* 10Gb/s linecard

* Requires 300Mbytes of buffering.

* Read and write 40 byte packet every 32ns.
* Memory technologies

* DRAM: require 4 devices, but too slow.

« SRAM: require 80 devices, 1kW, $2000.
» Problem gets harder at 40Gb/s

 Hence RLDRAM, FCRAM, etc.

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

Summary Buffered Link

W

Buffer Minimum window
|

v L A/ for full utilization

1

« With sufficient buffering we achieve full link utilization
» The window is always above the critical threshold
» Buffer absorbs changes in window size
« Buffer Size = Height of TCP Sawtooth
* Minimum buffer size needed is 2T*C
* This is the origin of the rule-of-thumb

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

47

Rule-of-thumb

| N .. I .. I ..
* Rule-of-thumb makes sense for one flow

» Typical backbone link has > 20,000 flows
* Does the rule-of-thumb still hold?

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

12



If flows are synchronized T_,f%;j
- - - - L

» Aggregate window has same dynamics
» Therefore buffer occupancy has same dynamics
* Rule-of-thumb still holds.

&\mvasan Seshan, 2004 — _LmA o _ 49
oy z La

Central Limit Theorem ?f&;;
|| S N . N . |

» CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

+ Width of Gaussian decreases with % 1
n

- Buffer size should also decreases with vn
B

B - o 2TxC

no An

L -4;10-7-04 51

© Srinivasan Seshan, 2004
—

7
. oy e
If flows are not synchronized WLk
el
N d Y
| I I I L
2 i
A
B
0
100 T
Gaussian with Vean 7729.1 Packets, StdDev 2523 -
80
60 |- S —
ki) Probability
ol ¢ Distribution
| Hk
6800 7000 7200 7400 7600 7800 8000 8200 8400 8600
© Srinivasan Seshan, 2004 L -4;10-7-04 50
— — — R — —
7
oy e
i i 4%
el
Required buffer size e
N d Y
[ | Minimum Required Buffer to Achieve 95% Goodput n |
e ! i j Minimum Required Buffer‘[PKts] +
120 F 2T*C/sqrt(n) ===ms==== 4
100 - q
l
g sor % g
& IR
FAY
3 H«'*:{ 2T xC
E 60 -*.F 4
g w”“‘t vn
= o,
= i
L o, 4
0 T,
)
o ——
4 R +--;..; ....................
20 | : i ]
Simulation
0 | | | I |
0 50 100 150 200 250 300
Number of TCP flows
© Srinivasan Seshan, 2004 L -4;10-7-04 52
— — — R — —

13



Integrity & Demultiplexing fos
| S N . N . L
* Port numbers

« Demultiplex from/to process
» Servers wait on well known ports (/etc/services)
* Checksum
« Is it sufficient to just checksum the packet contents?

* No, need to ensure correct source/destination
» Pseudoheader — portion of IP hdr that are critical
» Checksum covers Pseudoheader, transport hdr, and packet
body

» UDP provides just integrity and demux

© Srinivasan Seshan, 2004 L -4;10-7-04 53
— —

TCP Flow Control

| I I I L
» TCP is a sliding window protocol

» For window size n, can send up to n bytes
without receiving an acknowledgement

* When the data is acknowledged then the
window slides forward

« Each packet advertises a window size

* Indicates number of bytes the receiver has
space for

+ Original TCP always sent entire window
» Congestion control now limits this

a8
]

'
N
o’ g

© Srinivasan Seshan, 2004 L -4;10-7-04 55
— —

oy A
VA
g A
TCP Header oS
| I I I L
Source port Destination port
Sequence number
Flags: ?:I(\IN Acknowledgement
RESET HdrLen| o | Flags @ Advertised window
PUSH
URG Checksum Urgent pointer
ACK Options (variable)
Data
© Srinivasan Seshan, 2004 L -4;10-7-04 54
7
oy LA
. . . VA
Window Flow Control: Send Side paey
| I I I L

window

Sent and acked | Sent but not acked Not yet sent

Next to be sent

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

14



TCP Persist ey
| I I I L

» What happens if window is 07?

* Receiver updates window when application
reads data

* What if this update is lost?
» TCP Persist state
» Sender periodically sends 1 byte packets

* Receiver responds with ACK even if it can’t
store the packet

© Srinivasan Seshan, 2004 L -4;10-7-04 58
— —

Window Flow Control: Receive Side %~
[ - . . -
Receive buffer
Acked but not Not yet
delivered to user acked
window
By z La
Connection Establishment vay
[ - . . -

» A and B must agree on initial sequence

number selection
* Use 3-way handshake

A B

SYN + Seq A
» SYN+ACK-A + Seq B

ACK-B [*

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

59

Sequence Number Selection

* Why not simply chose 07?
» Must avoid overlap with earlier incarnation

© Srinivasan Seshan, 2004 L -4;10-7-04 60
— —

15



Connection Setup VT
| N .. I .. I .. |
CLOSED < active OPEN
3 create TCB
passive OPEN CLOSE Snd SYN
create TCB delete TCB
CLISTEN | CLOSE
delete TCB
rcv SYN SEND
snd SYN ACK snd SYN
SYN rcv SYN SYN
RCVD *~ snd ACK SENT
rev ACK of SYN Rov SYN, ACK
Snd ACK
CLOSE
Send FIN ESTAB
© Srinivasan Seshan, 2004 L -4; 10-7-04 61
2
oy e
P
Tear-down Packet Exchange VR
| N .. I .. I .. |
Sender Receiver
FIN
N
FIN-ACK_ _ - - = -
e -~ 77 Data write
i ,| Data ack
FIN
FIN-ACK "]
v

© Srinivasan Seshan, 2004
—

L -4;10-

7-04

63

Connection Tear-down ey
| N .. I .. I .. |
* Normal termination
« Allow unilateral close
* TCP must continue to receive data even
after closing
» Cannot close connection immediately
« What if a new connection restarts and uses
same sequence number?
&\mvasan Seshan, 2004 — _LmA o _ 62
N ~ a
Connection Tear-down ey
| N .. I .. I .. |
CLOSE
{ send FIN ESTAB
CLOSE rcv FIN
send FIN send ACK
FIN
WAIT-1
rcv FIN
snd ACK CLOSE
FIN+ACK v snd FIN
FIN WAIT-2 o ACk CLOSING LAST-ACK
rcv ACKof FIN - "oV ACK of FIN
rov FIN >TIME WAI Timeouteams] CLOSED
snd ACK delete TCB

© Srinivasan Seshan, 2004
—

L -4;10-7-04




Observed TCP Problems At

| I I I L
* Too many small packets
+ Silly window syndrome
* Nagel’s algorithm
* Initial sequence number selection
» Amount of state maintained

© Srinivasan Seshan, 2004 L -4;10-7-04 66
— —

oy LA
/[
: . Ao n
Detecting Half-open Connections pacey
| I I I L
TCP A TCP B
1. (CRASH) (send 300, receive 100)
2. CLOSED ESTABLISHED
3. SYN-SENT > <SEQ=400><CTL=SYN> > (??)
4. (I & <SEQ=300><ACK=100><CTL=ACK> & ESTABLISHED
5. SYN-SENT > <SEQ=100><CTL=RST> > (Abortl!)
6. SYN-SENT CLOSED
7. SYN-SENT > <SEQ=400><CTL=SYN> >
© Srinivasan Seshan, 2004 L -4;10-7-04 65
®
oy LA
/[
. . Ao n
Silly Window Syndrome VR
| I I I L

* Problem: (Clark, 1982)

* If receiver advertises small increases in the
receive window then the sender may waste
time sending lots of small packets

+ Solution

¢ Receiver must not advertise small window
increases

* Increase window by min(MSS,RecvBuffer/2)

© Srinivasan Seshan, 2004 L -4;10-7-04 67
— —

Nagel’s Algorithm ey
| S N . N . L

» Small packet problem:

* Don’'t want to send a 41 byte packet for each
keystroke

* How long to wait for more data?
+ Solution:

+ Allow only one outstanding small (not full sized)
segment that has not yet been acknowledged

© Srinivasan Seshan, 2004 L -4;10-7-04 68
— —

17



Why is Selecting ISN Important?
|

S N .
» Suppose machine X selects ISN based on

predictable sequence
* Fred has .rhosts to allow login to X from Y

 Evil Ed attacks

* Disables host Y — denial of service attack

* Make a bunch of connections to host X

» Determine ISN pattern a guess next ISN
Fake pkt1: [<src Y><dst X>, guessed ISN]
Fake pkt2: desired command

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

'l
oy

s
/[
Q"D\:LD
e
/N A
I L

TCP Extensions ey
| S N . N . L

* Implemented using TCP options
» Timestamp
* Protection from sequence number wraparound
* Large windows

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

il

Time Wait Issues ey
| I I I L
* Web servers not clients close connection
first
» Established - Fin-Waits > Time-Wait >
Closed
* Why would this be a problem?
» Time-Wait state lasts for 2 * MSL
* MSL is should be 120 seconds (is often 60s)
» Servers often have order of magnitude more
connections in Time-Wait
Protection From Wraparound {E
| I I I L

* Wraparound time vs. Link speed
* 1.5Mbps: 6.4 hours
* 10Mbps: 57 minutes
* 45Mbps: 13 minutes
* 100Mbps: 6 minutes
* 622Mbps: 55 seconds > < MSL!
* 1.2Gbps: 28 seconds

» Use timestamp to distinguish sequence
number wraparound

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

18



Large Windows vay
| S N . N . L

+ Delay-bandwidth product for 100ms delay
+ 1.5Mbps: 18KB
* 10Mbps: 122KB > max 16bit window
* 45Mbps: 549KB
+ 100Mbps: 1.2MB
+ 622Mbps: 7.4MB
+ 1.2Gbps: 14.8MB

» Scaling factor on advertised window

» Specifies how many bits window must be shifted to the
left

+ Scaling factor exchanged during connection setup

© Srinivasan Seshan, 2004 L -4;10-7-04 73
— —

Maximum Segment Size (MSS)

| I I I
» Exchanged at connection setup

 Typically pick MTU of local link
« What all does this effect?

« Efficiency

» Congestion control

* Retransmission
« Path MTU discovery

* Why should MTU match MSS?

© Srinivasan Seshan, 2004 L -4;10-7-04
— —

19



