
1

15-744: Computer Networking

L-5 Congestion Control

L -4; 10-7-04© Srinivasan Seshan, 2004 2

News

• Note problem set 1 update
• Part E: Please draw three RTTs after the loss,

not just one.
• Assigned reading

• [JK88] Congestion Avoidance and Control
• [CJ89] Analysis of the Increase and Decrease

Algorithms for Congestion Avoidance in
Computer Networks

L -4; 10-7-04© Srinivasan Seshan, 2004 3

Congestion

• Different sources compete for resources
inside network: Link b/w and queue space

• Why is it a problem?
• Sources are unaware of current state of resource
• Sources are unaware of each other
• In many situations will result in < 1.5 Mbps of

throughput (congestion collapse)

10 Mbps

100 Mbps

1.5 Mbps

L -4; 10-7-04© Srinivasan Seshan, 2004 4

Causes & Costs of Congestion

• Four senders – multihop paths
• Timeout/retransmit

Q: What happens as rate
increases?

2

L -4; 10-7-04© Srinivasan Seshan, 2004 5

Causes & Costs of Congestion

• When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

L -4; 10-7-04© Srinivasan Seshan, 2004 6

Congestion Collapse

• Definition: Increase in network load results in
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• Classical congestion collapse
• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in

network
• Solution: congestion control for ALL traffic

L -4; 10-7-04© Srinivasan Seshan, 2004 7

Other Congestion Collapse Causes
• Fragments

• Mismatch of transmission and retransmission units
• Solutions

• Make network drop all fragments of a packet (early packet
discard in ATM)

• Do path MTU discovery

• Control traffic
• Large percentage of traffic is for control

• Headers, routing messages, DNS, etc.

• Stale or unwanted packets
• Packets that are delayed on long queues
• “Push” data that is never used

L -4; 10-7-04© Srinivasan Seshan, 2004 8

Congestion Control and Avoidance

• Desirable properties:
• Scalability:

• # flows, range of capacities, range of delays
• Do well in entire range!

• Efficiency: High network utilization
• Fairness
• Works-ness: avoids collapse!

• Congestion collapse is not just a theory
• Has been frequently observed in many

networks

3

L -4; 10-7-04© Srinivasan Seshan, 2004 9

Fairness
• Jain’s fairness index

• f = (Σxi)2/n(Σxi
2)

• All x equal: 1
• k/n get service: k/n

• Max-min fairness
• No user receives more than their request, pi
• No other allocation satisfying (1) has higher min

allocation
• condition 2 holds as we remove the minimal user &

reduce total resource accordingly
• aka: ui = MIN(u fair, pi)

• Goal: Something that works well enough.
L -4; 10-7-04© Srinivasan Seshan, 2004 10

Objectives

• Simple router behavior
• Distributedness
• Efficiency: Xknee = Σxi(t)
• Fairness: (Σxi)2/n(Σxi

2)
• Power: (throughputα/delay)
• Convergence: control system must be

stable

L -4; 10-7-04© Srinivasan Seshan, 2004 11

Design questions

• Congestion
• How is congestion signaled?

• Either mark or drop packets
• When is a router congested?

• Drop tail queues – when queue is full
• Average queue length – at some threshold

• Control questions:
• How do senders react to congestion?
• How do senders determine capacity for flow?

L -4; 10-7-04© Srinivasan Seshan, 2004 12

Congrol 2
• Upon congestion, flows must reduce rate
• How? Decrease algorithm

• If no congestion, flows might try sending more.
Increase algorithm.

• Let’s assume window-based flow control
• sender maintains “cwnd”: # of unacknowledged

packets in the network at any time
• Transmission rate: cwnd / rtt

• (Alternate: Rate-based; equation-based)

4

L -4; 10-7-04© Srinivasan Seshan, 2004 13

Linear Control

• Many different possibilities for reaction to
congestion and probing
• Examine simple linear controls
• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for

decrease
• Supports various reaction to signals

• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?

L -4; 10-7-04© Srinivasan Seshan, 2004 14

Phase plots

• Simple way to visualize behavior of
competing connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

L -4; 10-7-04© Srinivasan Seshan, 2004 15

Phase plots

• What are desirable properties?
• What if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2 Optimal point

Overload

Underutilization

L -4; 10-7-04© Srinivasan Seshan, 2004 16

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

• Both X1 and X2 increase/decrease by the same
amount over time
• Additive increase improves fairness and additive

decrease reduces fairness

5

L -4; 10-7-04© Srinivasan Seshan, 2004 17

Multiplicative Increase/Decrease

• Both X1 and X2 increase by the same factor
over time
• Extension from origin – constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

L -4; 10-7-04© Srinivasan Seshan, 2004 18

What is the Right Choice?

• Constraints limit us to AIMD
• Can have multiplicative term in increase (MAIMD)
• AIMD moves towards optimal point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

L -4; 10-7-04© Srinivasan Seshan, 2004 19

TCP and linear controls

• Upon congestion:
• w(t+1) = a*w(t) 0 < a < 1

• While probing
• w(t+1) = w(t) + b 0 < b << wmax

• TCP sets a = 1/2, b = 1 (packet)

L -4; 10-7-04© Srinivasan Seshan, 2004 20

TCP Congestion Control

• Motivated by ARPANET congestion collapse
• Underlying design principle: packet conservation

• At equilibrium, inject packet into network only when one
is removed

• Basis for stability of physical systems
• Why was this not working?

• Connection doesn’t reach equilibrium
• Spurious retransmissions
• Resource limitations prevent equilibrium

6

L -4; 10-7-04© Srinivasan Seshan, 2004 21

TCP Congestion Control - Solutions

• Reaching equilibrium
• Slow start

• Eliminates spurious retransmissions
• Accurate RTO estimation
• Fast retransmit

• Adapting to resource availability
• Congestion avoidance

L -4; 10-7-04© Srinivasan Seshan, 2004 22

TCP Congestion Control

• Changes to TCP motivated by
ARPANET congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking

L -4; 10-7-04© Srinivasan Seshan, 2004 23

AIMD: Now you grok the sawtooth

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and

results in a multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth
by increasing its rate

Time

Rate

L -4; 10-7-04© Srinivasan Seshan, 2004 24

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet?  1 MSS worth of bytes
• After cwnd packets have passed by 

approximately increase of 1 MSS

• Implements AIMD

7

L -4; 10-7-04© Srinivasan Seshan, 2004 25

Congestion Avoidance Sequence
Plot

Time

Sequence No

Packets

Acks

L -4; 10-7-04© Srinivasan Seshan, 2004 26

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

L -4; 10-7-04© Srinivasan Seshan, 2004 27

Packet Conservation

• At equilibrium, inject packet into network only
when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets 

would overflow links
• Need to carefully pace out packets (ack clocking)!
• Helps provide stability

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast retransmit)

L -4; 10-7-04© Srinivasan Seshan, 2004 28

TCP Packet Pacing
• Congestion window helps to “pace” the

transmission of data packets
• In steady state, a packet is sent when an ack is

received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

ArAb

ReceiverSender

As

8

L -4; 10-7-04© Srinivasan Seshan, 2004 29

Reaching Steady State

• Doing AIMD is fine in steady state but
slow…

• How does TCP know what is a good initial
rate to start with?
• Should work both for a CDPD (10s of Kbps or

less) and for supercomputer links (10 Gbps and
growing)

• Quick initial phase to help get up to speed
(slow start)

L -4; 10-7-04© Srinivasan Seshan, 2004 30

Slow Start Packet Pacing

• How do we get this
clocking behavior to
start?
• Initialize cwnd = 1
• Upon receipt of every

ack, cwnd = cwnd + 1
• Implications

• Window actually
increases to W in RTT *
log2(W)

• Can overshoot window
and cause packet loss

L -4; 10-7-04© Srinivasan Seshan, 2004 31

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

L -4; 10-7-04© Srinivasan Seshan, 2004 32

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

9

L -4; 10-7-04© Srinivasan Seshan, 2004 33

Return to Slow Start

• If packet is lost we lose our self clocking as
well
• Need to implement slow-start and congestion

avoidance together
• When timeout occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

L -4; 10-7-04© Srinivasan Seshan, 2004 34

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

L -4; 10-7-04© Srinivasan Seshan, 2004 35

TCP Modeling

• Given the congestion behavior of TCP can we
predict what type of performance we should get?

• What are the important factors
• Loss rate

• Affects how often window is reduced

• RTT
• Affects increase rate and relates BW to window

• RTO
• Affects performance during loss recovery

• MSS
• Affects increase rate

L -4; 10-7-04© Srinivasan Seshan, 2004 36

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP losses packet each
time window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packetW/2

* RTT before next loss
• BW = MSS * avg window/RTT = MSS * (W +

W/2)/(2 * RTT) = .75 * MSS * W / RTT

10

L -4; 10-7-04© Srinivasan Seshan, 2004 37

Simple Loss Model

• What was the loss rate?
• Packets transferred = (.75 W/RTT) * (W/2 *

RTT) = 3W2/8
• 1 packet lost  loss rate = p = 8/3W2

• W = sqrt(8 / (3 * loss rate))
• BW = .75 * MSS * W / RTT

• BW = MSS / (RTT * sqrt (2/3p))

L -4; 10-7-04© Srinivasan Seshan, 2004 38

TCP Friendliness

• What does it mean to be TCP friendly?
• TCP is not going away
• Any new congestion control must compete with TCP

flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• If it shows 1/sqrt(p) behavior it is ok
• But is this really true?

L -4; 10-7-04© Srinivasan Seshan, 2004 39

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

L -4; 10-7-04© Srinivasan Seshan, 2004 40

Summary Unbuffered Link

t

W Minimum window
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

11

L -4; 10-7-04© Srinivasan Seshan, 2004 41

TCP Performance

• In the real world, router queues play
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT *

bottleneck bandwidth
• If window is larger, packets sit in queue on

bottleneck link

L -4; 10-7-04© Srinivasan Seshan, 2004 42

TCP Performance

• If we have a large router queue  can get 100%
utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W  W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT

L -4; 10-7-04© Srinivasan Seshan, 2004 43

Single TCP Flow
Router with large enough buffers for full link utilization

L -4; 10-7-04© Srinivasan Seshan, 2004 44

Important Lessons
• How does TCP implement AIMD?

• Sliding window, slow start & ack clocking
• How to maintain ack clocking during loss recovery 

fast recovery

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them?  fast retransmit, SACK

• How does TCP fully utilize a link?
• Role of router buffers

12

L -4; 10-7-04© Srinivasan Seshan, 2004 45

Additional Slides for the Curious

L -4; 10-7-04© Srinivasan Seshan, 2004 46

Example

• 10Gb/s linecard
• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow.
• SRAM: require 80 devices, 1kW, $2000.

• Problem gets harder at 40Gb/s
• Hence RLDRAM, FCRAM, etc.

L -4; 10-7-04© Srinivasan Seshan, 2004 47

Summary Buffered Link

t

W

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer

L -4; 10-7-04© Srinivasan Seshan, 2004 48

Rule-of-thumb

• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?

13

L -4; 10-7-04© Srinivasan Seshan, 2004 49

If flows are synchronized

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

2

max
W

t

max

2

W

!

max
W!

max
W

L -4; 10-7-04© Srinivasan Seshan, 2004 50

If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

!W

L -4; 10-7-04© Srinivasan Seshan, 2004 51

Central Limit Theorem

• CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

• Width of Gaussian decreases with
• Buffer size should also decreases with

n

CT

n

B
B

n
!

=" = 2
1

n

1

n

1

L -4; 10-7-04© Srinivasan Seshan, 2004 52

Required buffer size

2T C

n

!

Simulation

14

L -4; 10-7-04© Srinivasan Seshan, 2004 53

Integrity & Demultiplexing

• Port numbers
• Demultiplex from/to process
• Servers wait on well known ports (/etc/services)

• Checksum
• Is it sufficient to just checksum the packet contents?
• No, need to ensure correct source/destination

• Pseudoheader – portion of IP hdr that are critical
• Checksum covers Pseudoheader, transport hdr, and packet

body

• UDP provides just integrity and demux

L -4; 10-7-04© Srinivasan Seshan, 2004 54

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

L -4; 10-7-04© Srinivasan Seshan, 2004 55

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes

without receiving an acknowledgement
• When the data is acknowledged then the

window slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has
space for

• Original TCP always sent entire window
• Congestion control now limits this

L -4; 10-7-04© Srinivasan Seshan, 2004 56

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

15

L -4; 10-7-04© Srinivasan Seshan, 2004 57

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

L -4; 10-7-04© Srinivasan Seshan, 2004 58

TCP Persist

• What happens if window is 0?
• Receiver updates window when application

reads data
• What if this update is lost?

• TCP Persist state
• Sender periodically sends 1 byte packets
• Receiver responds with ACK even if it can’t

store the packet

L -4; 10-7-04© Srinivasan Seshan, 2004 59

Connection Establishment

• A and B must agree on initial sequence
number selection
• Use 3-way handshake

A B

SYN + Seq A
SYN+ACK-A + Seq B

ACK-B

L -4; 10-7-04© Srinivasan Seshan, 2004 60

Sequence Number Selection

• Why not simply chose 0?
• Must avoid overlap with earlier incarnation

16

L -4; 10-7-04© Srinivasan Seshan, 2004 61

Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB
passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK
Rcv SYN, ACK

rcv SYN
snd ACK

L -4; 10-7-04© Srinivasan Seshan, 2004 62

Connection Tear-down

• Normal termination
• Allow unilateral close

• TCP must continue to receive data even
after closing

• Cannot close connection immediately
• What if a new connection restarts and uses

same sequence number?

L -4; 10-7-04© Srinivasan Seshan, 2004 63

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

L -4; 10-7-04© Srinivasan Seshan, 2004 64

Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

17

L -4; 10-7-04© Srinivasan Seshan, 2004 65

Detecting Half-open Connections

1. (CRASH)
2. CLOSED
3. SYN-SENT  <SEQ=400><CTL=SYN>
4. (!!)  <SEQ=300><ACK=100><CTL=ACK>
5. SYN-SENT  <SEQ=100><CTL=RST>
6. SYN-SENT
7. SYN-SENT  <SEQ=400><CTL=SYN>

 (send 300, receive 100)
 ESTABLISHED
 (??)
 ESTABLISHED
 (Abort!!)
 CLOSED


TCP BTCP A

L -4; 10-7-04© Srinivasan Seshan, 2004 66

Observed TCP Problems

• Too many small packets
• Silly window syndrome
• Nagel’s algorithm

• Initial sequence number selection
• Amount of state maintained

L -4; 10-7-04© Srinivasan Seshan, 2004 67

Silly Window Syndrome

• Problem: (Clark, 1982)
• If receiver advertises small increases in the

receive window then the sender may waste
time sending lots of small packets

• Solution
• Receiver must not advertise small window

increases
• Increase window by min(MSS,RecvBuffer/2)

L -4; 10-7-04© Srinivasan Seshan, 2004 68

Nagel’s Algorithm

• Small packet problem:
• Don’t want to send a 41 byte packet for each

keystroke
• How long to wait for more data?

• Solution:
• Allow only one outstanding small (not full sized)

segment that has not yet been acknowledged

18

L -4; 10-7-04© Srinivasan Seshan, 2004 69

Why is Selecting ISN Important?

• Suppose machine X selects ISN based on
predictable sequence

• Fred has .rhosts to allow login to X from Y
• Evil Ed attacks

• Disables host Y – denial of service attack
• Make a bunch of connections to host X
• Determine ISN pattern a guess next ISN
• Fake pkt1: [<src Y><dst X>, guessed ISN]
• Fake pkt2: desired command

L -4; 10-7-04© Srinivasan Seshan, 2004 70

Time Wait Issues

• Web servers not clients close connection
first
• Established  Fin-Waits  Time-Wait 

Closed
• Why would this be a problem?

• Time-Wait state lasts for 2 * MSL
• MSL is should be 120 seconds (is often 60s)
• Servers often have order of magnitude more

connections in Time-Wait

L -4; 10-7-04© Srinivasan Seshan, 2004 71

TCP Extensions

• Implemented using TCP options
• Timestamp
• Protection from sequence number wraparound
• Large windows

L -4; 10-7-04© Srinivasan Seshan, 2004 72

Protection From Wraparound

• Wraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds  < MSL!
• 1.2Gbps: 28 seconds

• Use timestamp to distinguish sequence
number wraparound

19

L -4; 10-7-04© Srinivasan Seshan, 2004 73

Large Windows

• Delay-bandwidth product for 100ms delay
• 1.5Mbps: 18KB
• 10Mbps: 122KB > max 16bit window
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the

left
• Scaling factor exchanged during connection setup

L -4; 10-7-04© Srinivasan Seshan, 2004 74

Maximum Segment Size (MSS)

• Exchanged at connection setup
• Typically pick MTU of local link

• What all does this effect?
• Efficiency
• Congestion control
• Retransmission

• Path MTU discovery
• Why should MTU match MSS?

