
1

Internet Architecture and
Assumptions
David Andersen

CMU Computer Science

Course status

• 27 registered (goal: 24)
• 24 on waitlist (goal: 0)
• So – still not looking so good.

– If you’re dropping, remember to actually
drop!

• Remember: Project groups!

2

Internet Architecture
• Background

– “The Design Philosophy of the DARPA Internet
Protocols” (David Clark, 1988).

• Fundamental goal: Effective network
interconnection

• Goals, in order of priority:
1. Continue despite loss of networks or gateways
2. Support multiple types of communication service
3. Accommodate a variety of networks
4. Permit distributed management of Internet

resources
5. Cost effective
6. Host attachment should be easy
7. Resource accountability

Priorities

• Technical Lessons
– Packet switching
– Fate Sharing/Soft state

• The effects of the order of items in that
list are still felt today
– E.g., resource accounting is a hard, current

research topic
• Let’s look at them in detail

3

Fundamental Goal
• “technique for multiplexed utilization of

existing interconnected networks”

• Multiplexing (sharing)
– Shared use of a single communications channel

• Existing networks (interconnection)
– Tries to define an “easy” set of requirements for

the underlying networks to support as many as
possible

Sharing and Multiplexing
• Question #1: How do you avoid an all-to-all

network topology?
– Multiplexing!
– How can you do it? TDMA, FDMA, CDMA
– And you can do statistical multiplexing

• Stat mux: Efficient sharing of resources
– A link can always transmit when it has data!

4

Datagram Switching
• Information for forwarding traffic is contained in

destination address of packet
• No state established ahead of time (helps fate sharing)
• Basic building block – must build things like TCP on top
• Pretty much implies statistical multiplexing
• Alternatives:
• Circuit Switching: Signaling protocol sets up entire path out-of-

band. (cf. the phone network)
• Virtual Circuits: Hybrid approach. Packets carry “tags” to indicate

path, forwarding over IP
• Source routing: Complete route is contained in each data packet

Preview: An Age-Old Debate

It is held that packet switching was one of the Internet’s
greatest design choices.

Of course, there are constant attempts to shoehorn the best
aspects of circuits into packet switching.

Examples: Capabilities, MPLS,ATM, IntServ QoS, etc.

• Circuits vs Packets?
• Circuits: Guaranteed QoS, dedicated

connection, easy accounting
• Packets: Efficiency, simplicity

5

Survivability
• If network disrupted and reconfigured

– Communicating entities should not care!
– No higher-level state reconfiguration
– Ergo, transport interface only knows “working” and “not

working.” Not working == complete partition.
• How to achieve such reliability?

– Where can communication state be stored?

MoreLessHost trust
StatelessMaintain stateSwitches
SimpleToughNet Engineering
“Fate sharing”ReplicationFailure handing

HostNetwork

Fate Sharing

• Lose state information for an entity if (and
only if?) the entity itself is lost.

• Examples:
– OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots
– Is this still true in today’s network?

• NATs and firewalls

• Survivability compromise: Heterogenous
network -> less information available to end
hosts and Internet level recovery mechanisms

Connection
State StateNo State

6

Types of Service
• TCP vs. UDP

– Elastic apps that need reliability: remote login or email
– Inelastic, loss-tolerant apps: real-time voice or video
– Others in between, or with stronger requirements
– Biggest cause of delay variation: reliable delivery

• Today’s net: ~100ms RTT
• Reliable delivery can add seconds.

• Original Internet model: “TCP/IP” one layer
– First app was remote login…
– But then came debugging, voice, etc.
– These differences caused the layer split, added UDP

• No QoS support assumed from below
– In fact, some underlying nets only supported reliable delivery

• Made Internet datagram service less useful!
– Hard to implement without network support
– QoS is an ongoing debate…

Varieties of Networks
• Interconnect the ARPANET, X.25 networks, LANs,

satellite networks, packet networks, serial links…
• Mininum set of assumptions for underlying net

– Minimum packet size
– Reasonable delivery odds, but not 100%
– Some form of addressing unless point to point

• Important non-assumptions:
– Perfect reliability
– Broadcast, multicast
– Priority handling of traffic
– Internal knowledge of delays, speeds, failures, etc.

• Much engineering then only has to be done once

7

So, how do you support them?

• Need to interconnect many existing networks
• Hide underlying technology from applications
• Decisions:

– Network provides minimal functionality
– “Narrow waist”

Tradeoff: No assumptions, no guarantees.

Technology

Applications
 email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

 ethernet PPP…

CSMA async sonet...

 copper fiber radio...

The “Curse of the Narrow
Waist”

• IP over anything, anything over IP
– Has allowed for much innovation both

above and below the IP layer of the stack
– An IP stack gets a device on the Internet

• Drawbacks:
– difficult to make changes to IP
– But…people are trying (cf GENI)
– Only a small amount of information

available about lower levels. (cf wireless)

8

Goal #4: Distributed
Management

• Independently managed as a set of
independent “Autonomous Systems”
– ISPs
– CMU
– Etc.

• BGP (Border Gateway Protocol) connects
ASes together
– Completely (well…) decentralized routing
– Is this a good thing? (wait two slides)

A problem: Management
• “Some of the most significant problems with the

Internet today relate to lack of sufficient tools for
distributed management, especially in the area of
routing.”

• The Internet is now a hugely complex beast
– 18,000 constituent networks
– Routing tables with 1,000,000+ entries
– Gajillions of $$.

• Management and operational expenses becoming
increasingly important
– Remember that growth chart? Not just more b/w per user,

but constantly more users & links

9

Local Actions, Global
Consequences

“…a glitch at a small ISP… triggered a major outage in
Internet access across the country. The problem started
when MAI Network Services...passed bad router
information from one of its customers onto Sprint.”

 -- news.com, April 25, 1997

UUNet

Florida Internet
Barn

Sprint

Goal #5: Cost Effectiveness

• Packet headers introduce high
overhead – but so does circuit setup

• End-to-end retransmission of lost
packets
– Potentially wasteful of bandwidth by

placing burden on the edges of the network

Arguably a good tradeoff. Current trends are to exploit
redundancy even more.

Bandwidth is becoming cheaper in many environments

10

Goal #6: Ease of Attachment

• IP is “plug and play” Anything with a working
IP stack can connect to the Internet
(hourglass model)

• A huge success!
– Lesson: Lower the barrier to innovation/entry and

people will get creative (e.g., Cerf and Kahn
probably did not think about IP stacks on phones,
sensors, etc.)

• But….
Tradeoff: Burden on end systems/programmers.

Goal #7: Accountability
• Huge problem.
• Accounting

– Billing? (mostly flat-rate. But phones are moving that way
too - people like it!)

– Inter-provider payments
• Hornet’s nest. Complicated. Political. Hard.

• Accountability and security
– Huge problem.
– Worms, viruses, etc.

• Partly a host problem. But hosts very trusted.
– Authentication

• Purely optional. Many philosophical issues of privacy vs.
security.

11

Stopping Unwanted Traffic is
HardFebruary 2000 March 2006

Some environments challenge
the model

• Wireless
• Host mobility
• Ad hoc wireless networks
• Satellite
• Space
• Sensor networks
• Dial-up / store and forward
• Disconnection
• High availability requirements
• No QoS assumed from below
• Reasonable but non-zero loss rates

– What’s minimum recovery time?
• 1rtt

– But conservative assumptions end-to-end
• TCP RTO - min(1s)!

• Interconnect independent networks
– Federation makes things hard:

• My network is good. Is yours? Is the one in the middle?
– Scale

• Routing convergence times, etc.

12

Design wrapup

• IP model: Stat mux, datagrams, fate
sharing, narrow waist
– Successes: IP on everything!
– Drawbacks…

but perhaps
they’re totally
worth it in the
context of the
original Internet.
Might not have worked without them!

“This set of goals might seem to be nothing
more than a checklist of all the desirable
network features. It is important to understand
that these goals are in order of importance, and
an entirely different network architecture
would result if the order were changed.”

Project Stuff

“These changes in the Internet design
arose through the repeated pattern of
implementation and testing that
occurred before the standards were set”
-- ddc, Design Philosophy

The RFCs required “rough consensus
and working code” -- also coined by ddc

13

Some thoughts

• “Simulation is doomed to succeed” --
Rod Brooks (former MIT AI Lab
director)

• Simulation depends on what you
choose as input parameters.
– Easy to account for them b/c you set them
– Easy to be sensitive to things you forgot!

• ex: wireless routing protocols (later)

Some resources

• See the list on the web page
• Writing: The Elements of Style
• Graphing: The Visual Display of

Quantitative Information
• Research: Patterson “Bad Career” talk

14

Some tools

• Please learn LaTeX if you don’t know it
already.

• Pick one of gnuplot, ploticus, or jgraph
– Each has advantages & disadvantages. I use

gnuplot for most things and ploticus for really evil
complex graphs.

• Script aggressively. Automate your analysis
and eval from typing “run” to having graphs.
– Shorten the design/eval/re-think cycle!
– Up-front investment in time, but it pays off

Next Time: End-to-end
Arguments, ALF

• Read the E2E paper if you haven’t; think about the
argument it’s making.

• Some points to ponder:
• What functions can only be implemented correctly

with the help of the endpoints?

• What functions can not be implemented without the
help of the network?

• ALF: Application needs vs. what the network stack
provides

