

Lisp: Good News, Bad News, How to Win Big

Richard P. Gabriel
Lucid, Inc

Abstract

Lisp has done quite well over the last ten years: becoming nearly standardized, forming the basis of a
commercial sector, achieving excellent performance, having good environments, able to deliver appli-
cations. Yet the Lisp community has failed to do as well as it could have. In this paper I look at the
successes, the failures, and what to do next.

The Lisp world is in great shape: Ten years ago there was no standard Lisp; the most standard Lisp
was InterLisp, which ran on PDP-10’s and Xerox Lisp machines (some said it ran on Vaxes, but I
think they exaggerated); the second most standard Lisp was MacLisp, which ran only on PDP-10’s,
but under the three most popular operating systems for that machine; the third most standard Lisp
was Portable Standard Lisp, which ran on many machines, but very few people wanted to use it; the
fourth most standard Lisp was Zetalisp, which ran on two varieties of Lisp machine; and the fifth
most standard Lisp was Scheme, which ran on a few different kinds of machine, but very few people
wanted to use it. By today’s standards, each of these had poor or just barely acceptable performance,
nonexistent or just barely satisfactory environments, nonexistent or poor integration with other lan-
guages and software, poor portability, poor acceptance, and poor commercial prospects.

Today there is Common Lisp (CL), which runs on all major machines, all major operating systems,
and virtually in every country. Common Lisp is about to be standardized by ANSI, has good perfor-
mance, is surrounded with good environments, and has good integration with other languages and
software.

But, as a business, Lisp is considered to be in ill health. There are persistent and sometimes true
rumors about the abandonment of Lisp as a vehicle for delivery of practical applications.

To some extent the problem is one of perception—there are simply better Lisp delivery solutions
than are generally believed to exist and to a disturbing extent the problem is one of unplaced or mis-
placed resources, of projects not undertaken, and of implementation strategies not activated.

Part of the problem stems from our very dear friends in the artificial intelligence (AI) business. AI
has a number of good approaches to formalizing human knowledge and problem solving behavior.
However, AI does not provide a panacea in any area of its applicability. Some early promoters of AI
to the commercial world raised expectation levels too high. These expectations had to do with the
effectiveness and deliverability of expert-system-based applications.

When these expectations were not met, some looked for scapegoats, which frequently were the Lisp
companies, particularly when it came to deliverability. Of course, if the AI companies had any notion
about what the market would eventually expect from delivered AI software, they never shared it with
any Lisp companies I know about. I believe the attitude of the AI companies was that the Lisp com-
panies will do what they need to survive, so why share customer lists and information with them?
Lisp: Good News, Bad News, How to Win Big December 2, 2000 1

Another part of the problem is the relatively bad press Lisp got, sometimes from very respectable
publications. I saw an article in Forbes (October 16, 1989) entitled Where Lisp Slipped, by Julie Pitta.
However, the article was about Symbolics and its fortunes. The largest criticisms of Symbolics in the
article are that Symbolics believed AI would take off and that Symbolics mistakenly pushed its view
that proprietary hardware was the way to go for AI. There was nothing about Lisp in the article
except the statement that it is a somewhat obscure programming language used extensively in artifi-
cial intelligence.

It seems a pity for the Lisp business to take a bump partly because Julie thought she could make a
cute title for her article out of the name “Lisp.”

But, there are some real successes for Lisp, some problems, and some ways out of those problems.

1.0 Lisp’s Successes

As I mentioned, Lisp is in better shape today than it ever has been. I want to review some Lisp suc-
cess stories.

1.1 Standardization

A major success is that there is a standard Lisp—Common Lisp. Many observers today wish there
were a simpler, smaller, cleaner Lisp that could be standardized, but the Lisp that we have today that
is ready for standardization is Common Lisp. This isn’t to say that a better Lisp could not be stan-
dardized later, and certainly there should be. Furthermore, like any language, Common Lisp should
be improved and changed as needs change.

Common Lisp started as a grassroots effort in 1981 after an ARPA-sponsored meeting held at SRI
to determine the future of Lisp. At that time there were a number of Lisps in the US being defined
and implemented by former MIT folks: Greenblatt (LMI), Moon and Weinreb (Symbolics), Fahl-
man and Steele (CMU), White (MIT), and Gabriel and Steele (LLNL). The core of the Common
Lisp committee came from this group. That core was Fahlman, Gabriel, Moon, Steele, and Weinreb,
and Common Lisp was a coalescence of the Lisps these people cared about.

There were other Lisps that could have blended into Common Lisp, but they were not so clearly in
the MacLisp tradition, and their proponents declined to actively participate in the effort because
they predicted success for their own dialects over any common lisp that was defined by the grassroots
effort. Among these Lisps were Scheme, Interlisp, Franz Lisp, Portable Standard Lisp, and Lisp370.

And outside the US there were major Lisp efforts, including Cambridge Lisp and Le-Lisp. The
humble US grassroots effort did not seek membership from outside the US, and one can safely
regard that as a mistake. Frankly, it never occurred to the Common Lisp group that this purely
American effort would be of interest outside the US, because very few of the group saw a future in
AI that would extend the needs for a standard Lisp beyond North America.

Common Lisp was defined and a book published in 1984 called Common Lisp: the Language
(CLtL). And several companies sprang up to put Common Lisp on stock hardware to compete
against the Lisp machine companies. Within four years, virtually every major computer company
Lisp: Good News, Bad News, How to Win Big December 2, 2000 2

had a Common Lisp that it had either implemented itself or private-labeled from a Common Lisp
company.

In 1986, X3J13 was formed to produce an ANSI version of Common Lisp. By then it was apparent
that there were significant changes required to Common Lisp to clean up ambiguities and omissions,
to add a condition system, and to define object-oriented extensions.

After several years it became clear that the process of standardization was not simple, even given a
mature language with a good definition. The specification of the Common Lisp Object System
(CLOS) alone took nearly two years and seven of the most talented members of X3J13.

It also became apparent that the interest in international Lisp standardization was growing. But
there was no heir apparent to Common Lisp. Critics of Common Lisp, especially those outside the
US, focused on Common Lisp’s failures as a practical delivery vehicle.

In 1988, an international working group for the standardization of Lisp was formed. That group is
called WG16. Two things are absolutely clear: The near-term standard Lisp is Common Lisp; a
longer-term standard that goes beyond Common Lisp is desirable.

In 1988, the IEEE Scheme working group was formed to produce an IEEE and possibly an ANSI
standard for Scheme. This group completed its work in 1990, and the relatively small and clean
Scheme is a standard.

Currently, X3J13 is less than a year away from a draft standard for ANSI Common Lisp; WG16 is
stalled because of international bickering; Scheme has been standardized by IEEE, but it is of lim-
ited commercial interest.

Common Lisp is in use internationally, and serves at least as a de facto standard until the always con-
tentious Lisp community agrees to work together.

1.2 Good Performance

Common Lisp performs well. Most current implementations use modern compiler technology, in
contrast to older Lisps, which used very primitive compiler techniques, even for the time. In terms of
performance, anyone using a Common Lisp today on almost any computer can expect better perfor-
mance than could be obtained on single-user PDP-10’s or on single-user Lisp machines of mid-
1980’s vintage. Many Common Lisp implementations have multitasking and non-intrusive garbage
collection—both regarded as impossible features on stock hardware ten years ago.

In fact, Common Lisp performs well on benchmarks compared to C. The following table shows the
ratio of Lisp time and code size to C time and code size for three benchmarks:

Benchmark CPU Time Code Size

Tak 0.90 1.21

Traverse 0.98 1.35

Lexer 1.07 1.48
Lisp: Good News, Bad News, How to Win Big December 2, 2000 3

Tak is a Gabriel benchmark that measures function calling and fixnum arithmetic. Traverse is a
Gabriel benchmark that measures structure creation and access. Lexer is the tokenizer of a C com-
piler and measures dispatching and character manipulation.

These benchmarks were run on a Sun 3 in 1987 using the standard Sun C compiler using full opti-
mization. The Lisp was not running a non-intrusive garbage collector.

1.3 Good Environments

It is arguable that modern programming environments come from the Lisp and AI tradition. The
first bit-mapped terminals (Stanford/MIT), the mouse pointing device (SRI), full-screen text edi-
tors (Stanford/MIT), and windowed environments (Xerox PARC) all came from laboratories
engaged in AI research. Even today one can argue that the Symbolics programming environment
represents the state of the art.

It is also arguable that the following development environment features originated in the Lisp world:

• incremental compilation and loading
• symbolic debuggers
• data inspectors
• source code level single stepping
• help on builtin operators
• window-based debugging
• symbolic stack backtraces
• structure editors

Today’s Lisp environments are equal to the very best Lisp machine environments in the 1970’s. Win-
dowing, fancy editing, and good debugging are all commonplace. In some Lisp systems, significant
attention has been paid to the software lifecycle through the use of source control facilities, automatic
cross-referencing, and automatic testing.

1.4 Good Integration

Today Lisp code can coexist with C, Pascal, Fortran, etc. These languages can be invoked from Lisp
and in general, these languages can then re-invoke Lisp. Such interfaces allow the programmer to
pass Lisp data to foreign code, to pass foreign data to Lisp code, to manipulate foreign data from Lisp
code, to manipulate Lisp data from foreign code, to dynamically load foreign programs, and to freely
mix foreign and Lisp functions.

The facilities for this functionality are quite extensive and provide a means for mixing several differ-
ent languages at once.

1.5 Object-oriented Programming

Lisp has the most powerful, comprehensive, and pervasively object-oriented extensions of any lan-
guage. CLOS embodies features not found in any other object-oriented language. These include the
following:
Lisp: Good News, Bad News, How to Win Big December 2, 2000 4

• multiple inheritance
• generic functions including multi-methods
• first-class classes
• first-class generic functions
• metaclasses
• method combination
• initialization protocols
• metaobject protocol
• integration with Lisp types

It is likely that Common Lisp (with CLOS) will be the first standardized object-oriented program-
ming language.

1.6 Delivery

It is possible to deliver applications written in Lisp. As we shall see, the currently available tools are
good but are not yet ideal. The remainder of this section is about a successful approach to delivery
taken by Lucid.

The Lucid Delivery Tool Kit comprises three tool sets: Performance Monitoring, Reorganization,
and Treeshaking.

1.6.1 Performance Monitoring Tools

The Performance Monitoring tools provide information about dynamic behavior of programs.
Because storage allocation and deallocation is often an important factor in program performance, the
tools also provide information about storage allocation. While there is nothing novel about these
tools, their use is almost always critical to achieving good program performance.

1.6.2 The Reorganizer

For programs whose working set exceeds available real memory, the time spent inside virtual memory
system-code can greatly exceed the time spent in user-code. For example, let us assume that we have
a program which does nothing but memory-reference instructions randomly throughout its working
set. If we denote by WS the working set of a program, by Mem the real memory available to that pro-
gram, and by Utime the time spent in actual user-code, and by Total the total run time for the pro-
gram, a simple analysis gives the following equations for Total:

, for
, for

Pft is the page-fault-time—that is, amount of time it takes to handle a page-fault. On typical machines
this number is usually 1,000 to 10,000 times as long as it takes to execute a memory-reference
instruction that doesn’t cause a page-fault.1

Because a Lisp program can often have a working set exceeding available memory, tools that help
reduce working set can lead to very large performance improvements. In some cases, the working set

Total Utime= WS Mem≤
Total Utime Pft WS Mem–() WS()⁄⋅+= WS Mem>
Lisp: Good News, Bad News, How to Win Big December 2, 2000 5

can be reduced by lessening reliance on dynamically allocated objects—that is, by lessening CONS-
ing of the program. However, in instances where the working set size is due primarily to references to
permanent objects, other techniques are needed.

The approach taken in the Lucid Delivery Tool Kitis to reorganize the permanent objects in the Lisp
address space so as to place objects that have similar patterns of reference at nearby addresses. (In
particular, this means at least segregating the objects that are referenced by a program from those
that are not.)

1.6.3 The Treeshaker

Most Lisp development systems, including Lucid’s, provide all the resources of the Lisp system by
default, and this in turn leads to a style of development in which the programmer makes use of what-
ever tool happens to be most convenient.2 Because much of the basic Lisp system (or any develop-
ment system built on top of the basic Lisp system) will generally be unused by a given application, it
is very worthwhile to have a tool for excising these unused parts. This tool is called the Treeshaker.3

Treeshaker execution occurs in three phases: walking, testing and writing. In the walking phase, the
Treeshaker accumulates a set of objects that need to be included in the saved image. After making
this set, the treeshaker runs a test of the application to check that all objects which are used in a typ-
ical run have been included. The writing phase then generates an executable image which will run
the application.

To a first approximation, the walk phase is just a matter of computing the connected component of
the Lisp image (treated as a directed graph in the obvious way) generated by the application’s top-
level function. However, because of the way that Lisp objects are generally connected this usually
includes almost the entire Lisp image including the unused subsystems. Therefore the treeshaker
uses several techniques to find connections between objects that do not actually need to be followed
in the walk.

1.6.4 Results

The first example is a simple expert system that helps align magnetic resonance imaging equipment.
The results are for the original program, and a reorganized and treeshaken version running two dif-

1. Adapting the equation to a more normal mix of instructions involves only changing the value of
Pft, and it is not unusual for the adjusted Pft to lie in the range of 100 to 1000.

2. This is in contrast to a language such as C where the default is a sort of “machine-independent”’
assembly language, and including other tools requires an explicit use of the appropriate library. Of
course, this may lead to a more deliberate style of programming, but it is at the cost of making the
programmer’s job more tedious.

3. The name Treeshaker is meant to be evocative of the idea of actually shaking a tree to dislodge
dead branches or other trash.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 6

ferent tests, a short and a long test. WS is the working set in megabytes. The time is expressed as
hours:minutes.

The second example is Reduce, a symbolic algebra system. The three programs are the original, a
treeshaken version, and a treeshaken and reorganized version. The CPU column is the time in sec-
onds the CPU spent executing user code—that is, all other time is page fault handling time.

2.0 Lisp’s Apparent Failures

Too many teardrops for one heart to be crying.
Too many teardrops for one heart to carry on.
You’re way on top now, since you left me,
Always laughing, way down at me.

? & The Mysterians

This happy story, though, has a sad interlude, an interlude that might be attributed to the failure of
AI to soar, but which probably has some other grains of truth that we must heed. The key problem
with Lisp today stems from the tension between two opposing software philosophies. The two phi-
losophies are called The Right Thing and Worse is Better.

2.1 The Rise of Worse is Better

I and just about every designer of Common Lisp and CLOS has had extreme exposure to the
MIT/Stanford style of design. The essence of this style can be captured by the phrase the right thing.
To such a designer it is important to get all of the following characteristics right:

• Simplicity—the design must be simple, both in implementation and interface. It is more impor-
tant for the interface to be simple than the implementation.

• Correctness—the design must be correct in all observable aspects. Incorrectness is simply not
allowed.

• Consistency—the design must not be inconsistent. A design is allowed to be slightly less simple
and less complete to avoid inconsistency. Consistency is as important as correctness.

MRI Alignment Program

Short Long Size WS

Original 2:22 *:** 4.45mb 3.50mb

Final 0:42 4:11 1.65mb 2.25mb

Reduce Computer Algebra System

Size Time Faults CPU

Original 6.68mb 6:20 1230 55.2

Shaken 2.78mb 3:25 680 52.1

Reorganized 2.78mb 1:50 220 50.1
Lisp: Good News, Bad News, How to Win Big December 2, 2000 7

• Completeness—the design must cover as many important situations as is practical. All reason-
ably expected cases must be covered. Simplicity is not allowed to overly reduce completeness.

I believe most people would agree that these are good characteristics. I will call the use of this philos-
ophy of design the MIT approach. Common Lisp (with CLOS) and Scheme represent the MIT
approach to design and implementation.

The worse-is-better philosophy is only slightly different:

• Simplicity—the design must be simple, both in implementation and interface. It is more impor-
tant for the implementation to be simple than the interface.

• Simplicity is the most important consideration in a design.
• Correctness—the design must be correct in all observable aspects. It is slightly better to be simple

than correct.
• Consistency—the design must not be overly inconsistent. Consistency can be sacrificed for sim-

plicity in some cases, but it is better to drop those parts of the design that deal with less common
circumstances than to introduce either implementational complexity or inconsistency.

• Completeness—the design must cover as many important situations as is practical. All reason-
ably expected cases should be covered. Completeness can be sacrificed in favor of any other qual-
ity. In fact, completeness must sacrificed whenever implementation simplicity is jeopardized.
Consistency can be sacrificed to achieve completeness if simplicity is retained; especially worthless
is consistency of interface.

Early Unix and C are examples of the use of this school of design, and I will call the use of this design
strategy the New Jersey approach I have intentionally caricatured the worse-is-better philosophy to
convince you that it is obviously a bad philosophy and that the New Jersey approach is a bad
approach.

However, I believe that worse-is-better, even in its strawman form, has better survival characteristics
than the-right-thing, and that the New Jersey approach when used for software is a better approach
than the MIT approach.

Let me start out by retelling a story that shows that the MIT/New-Jersey distinction is valid and
that proponents of each philosophy actually believe their philosophy is better.

Two famous people, one from MIT and another from Berkeley (but working on Unix) once met to
discuss operating system issues. The person from MIT was knowledgeable about ITS (the MIT AI
Lab operating system) and had been reading the Unix sources. He was interested in how Unix solved
the PC loser-ing problem.

The PC loser-ing problem occurs when a user program invokes a system routine to perform a
lengthy operation that might have significant state, such as IO buffers. If an interrupt occurs during
the operation, the state of the user program must be saved. Because the invocation of the system rou-
tine is usually a single instruction, the PC of the user program does not adequately capture the state
of the process. The system routine must either back out or press forward. The right thing is to back
out and restore the user program PC to the instruction that invoked the system routine so that
resumption of the user program after the interrupt, for example, re-enters the system routine. It is
Lisp: Good News, Bad News, How to Win Big December 2, 2000 8

called PC loser-ing because the PC is being coerced into loser mode, where loser is the affectionate
name for user at MIT.

The MIT guy did not see any code that handled this case and asked the New Jersey guy how the
problem was handled. The New Jersey guy said that the Unix folks were aware of the problem, but
the solution was for the system routine to always finish, but sometimes an error code would be
returned that signaled that the system routine had failed to complete its action. A correct user pro-
gram, then, had to check the error code to determine whether to simply try the system routine again.
The MIT guy did not like this solution because it was not the right thing.

The New Jersey guy said that the Unix solution was right because the design philosophy of Unix was
simplicity and that the right thing was too complex. Besides, programmers could easily insert this
extra test and loop. The MIT guy pointed out that the implementation was simple but the interface
to the functionality was complex. The New Jersey guy said that the right tradeoff has been selected in
Unix—namely, implementation simplicity was more important than interface simplicity.

The MIT guy then muttered that sometimes it takes a tough man to make a tender chicken, but the
New Jersey guy didn’t understand (I’m not sure I do either).

Now I want to argue that worse-is-better is better. C is a programming language designed for writing
Unix, and it was designed using the New Jersey approach. C is therefore a language for which it is
easy to write a decent compiler, and it requires the programmer to write text that is easy for the com-
piler to interpret. Some have called C a fancy assembly language. Both early Unix and C compilers
had simple structures, are easy to port, require few machine resources to run, and provide about
50%–80% of what you want from an operating system and programming language.

Half the computers that exist at any point are worse than median (smaller or slower). Unix and C
work fine on them. The worse-is-better philosophy means that implementation simplicity has high-
est priority, which means Unix and C are easy to port on such machines. Therefore, one expects that
if the 50% functionality Unix and C support is satisfactory, they will start to appear everywhere. And
they have, haven’t they?

Unix and C are the ultimate computer viruses.

A further benefit of the worse-is-better philosophy is that the programmer is conditioned to sacrifice
some safety, convenience, and hassle to get good performance and modest resource use. Programs
written using the New Jersey approach will work well both in small machines and large ones, and the
code will be portable because it is written on top of a virus.

It is important to remember that the initial virus has to be basically good. If so, the viral spread is
assured as long as it is portable. Once the virus has spread, there will be pressure to improve it, possi-
bly by increasing its functionality closer to 90%, but users have already been conditioned to accept
worse than the right thing. Therefore, the worse-is-better software first will gain acceptance, second
will condition its users to expect less, and third will be improved to a point that is almost the right
thing.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 9

In concrete terms, even though Lisp compilers in 1987 were about as good as C compilers, there are
many more compiler experts who want to make C compilers better than want to make Lisp compil-
ers better.

The good news is that in 1995 we will have a good operating system and programming language; the
bad news is that they will be Unix and C++.

There is a final benefit to worse-is-better. Because a New Jersey language and system are not really
powerful enough to build complex monolithic software, large systems must be designed to reuse
components. Therefore, a tradition of integration springs up.

How does the right thing stack up? There are two basic scenarios: the big complex system scenario
and the diamond-like jewel scenario.

The big complex system scenario goes like this:

First, the right thing needs to be designed. Then its implementation needs to be designed. Finally it
is implemented. Because it is the right thing, it has nearly 100% of desired functionality, and imple-
mentation simplicity was never a concern so it takes a long time to implement. It is large and com-
plex. It requires complex tools to use properly. The last 20% takes 80% of the effort, and so the right
thing takes a long time to get out, and it only runs satisfactorily on the most sophisticated hardware.

The diamond-like jewel scenario goes like this:

The right thing takes forever to design, but it is quite small at every point along the way. To imple-
ment it to run fast is either impossible or beyond the capabilities of most implementors.

The two scenarios correspond to Common Lisp and Scheme. The first scenario is also the scenario
for classic artificial intelligence software.

The right thing is frequently a monolithic piece of software, but for no reason other than that the
right thing is often designed monolithically. That is, this characteristic is a happenstance.

The lesson to be learned from this is that it is often undesirable to go for the right thing first. It is
better to get half of the right thing available so that it spreads like a virus. Once people are hooked on
it, take the time to improve it to 90% of the right thing.

A wrong lesson is to take the parable literally and to conclude that C is the right vehicle for AI soft-
ware. The 50% solution has to be basically right, and in this case it isn’t.

But, one can conclude only that the Lisp community needs to seriously rethink its position on Lisp
design. I will say more about this later.

2.2 Good Lisp Programming is Hard

Many Lisp enthusiasts believe that Lisp programming is easy. This is true up to a point. When real
applications need to be delivered, the code needs to perform well.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 10

With C, programming is always difficult because the compiler requires so much description and
there are so few data types. In Lisp it is very easy to write programs that perform very poorly; in C it
is almost impossible to do that. The following examples of badly performing Lisp programs were all
written by competent Lisp programmers while writing real applications that were intended for
deployment. I find these quite sad.

2.2.1 Bad Declarations

This example is a mistake that is easy to make. The programmer here did not declare his arrays as
fully as he could have. Therefore, each array access was about as slow as a function call when it
should have been a few instructions. The original declaration was as follows:

(proclaim ’(type (array fixnum *) *ar1* *ar2* *ar3*))

The three arrays happen to be of fixed size, which is reflected in the following correct declaration:

(proclaim ’(type (simple-array fixnum (4)) *ar1*))
(proclaim ’(type (simple-array fixnum (4 4)) *ar2*))
(proclaim ’(type (simple-array fixnum (4 4 4)) *ar3*))

Altering the faulty declaration improved the performance of the entire system by 20%.

2.2.2 Poor Knowledge of the Implementation

The next example is where the implementation has not optimized a particular case of a general facil-
ity, and the programmer has used the general facility thinking it will be fast. Here five values are
being returned in a situation where the order of side effects is critical:

(multiple-value-prog1
 (values (f1 x)
 (f2 y)
 (f3 y)
 (f4 y)
 (f5 y))
 (setf (aref ar1 i1) (f6 y))
 (f7 x y))

The implementation happens to optimize multiple-value-prog1 for up to three return values, but the
case of five values CONSes. The correct code follows:

(let ((x1 (f1 x))
 (x2 (f2 y))
 (x3 (f3 y))
 (x4 (f4 y))
 (x5 (f5 y)))
 (setf (aref ar1 i1) (f6 y))
 (f7 x y)
 (values x1 x2 x3 x4 x5))

There is no reason that a programmer should know that this rewrite is needed. On the other hand,
finding that performance was not as expected should not have led the manager of the programmer in
question to conclude, as he did, that Lisp was the wrong language.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 11

2.2.3 Use of FORTRAN Idioms

Some Common Lisp compilers do not optimize the same way as others. The following expression is
sometimes used:

(* -1 <form>)

when compilers often produce better code for this variant:

(- <form>)

Of course, the first is the Lisp analog of the FORTRAN idiom:

-1*<form>

2.2.4 Totally Inappropriate Data Structures

Some might find this example hard to believe. This really occurred in some code I’ve seen:

(defun make-matrix (n m)
 (let ((matrix ()))
 (dotimes (i n matrix)
 (push (make-list m) matrix))))

(defun add-matrix (m1 m2)
 (let ((l1 (length m1))
 (l2 (length m2)))
 (let ((matrix (make-matrix l1 l2)))
 (dotimes (i l1 matrix)
 (dotimes (j l2)
 (setf (nth i (nth j matrix))
 (+ (nth i (nth j m1))
 (nth i (nth j m2)))))))))

What’s worse is that in the particular application, the matrices were all fixed size, and matrix arith-
metic would have been just as fast in Lisp as in FORTRAN.

This example is bitterly sad: The code is absolutely beautiful, but it adds matrices slowly. Therefore it
is excellent prototype code and lousy production code. You know, you cannot write production code
as bad as this in C.

2.3 Integration is God

In the worse-is-better world, integration is linking your .o files together, freely intercalling func-
tions, and using the same basic data representations. You don’t have a foreign loader, you don’t coerce
types across function-call boundaries, you don’t make one language dominant, and you don’t make
the woes of your implementation technology impact the entire system.

The very best Lisp foreign functionality is simply a joke when faced with the above reality. Every item
on the list can be addressed in a Lisp implementation. This is just not the way Lisp implementations
have been done in the right thing world.

The virus lives while the complex organism is stillborn. Lisp must adapt, not the other way around.
The right thing and 2 shillings will get you a cup of tea.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 12

2.4 Non-Lisp Environments are Catching Up

This is hard to face up to. For example, most C environments—initially imitative of Lisp environ-
ments—are now pretty good. Current best C environments have the following:

• symbolic debuggers
• data inspectors
• source code level single stepping
• help on builtin operators
• window-based debugging
• symbolic stack backtraces
• structure editors

And soon they will have incremental compilation and loading. These environments are easily extend-
ible to other languages, with multi-lingual environments not far behind.

Though still the best, current Lisp environments have several prominent failures. First, they tend to
be window-based but not well integrated. That is, related information is not represented so as to
convey the relationship. A multitude of windows does not mean integration, and neither does being
implemented in the same language and running in the same image. In fact, I believe no currently
available Lisp environment has any serious amount of integration.

Second, they are not persistent. They seemed to be defined for a single login session. Files are used to
keep persistent data—how 1960’s.

Third, they are not multi-lingual even when foreign interfaces are available.

Fourth, they do not address the software lifecycle in any extensive way. Documentation, specifica-
tions, maintenance, testing, validation, modification, and customer support are all ignored.

Fifth, information is not brought to bear at the right times. The compiler is able to provide some
information, but the environment should be able to generally know what is fully defined and what is
partially defined. Performance monitoring should not be a chore.

Sixth, using the environment is difficult. There are too many things to know. It’s just too hard to
manage the mechanics.

Seventh, environments are not multi-user when almost all interesting software is now written in
groups.

The real problem has been that almost no progress in Lisp environments has been made in the last
10 years.

3.0 How Lisp Can Win Big

When the sun comes up, I’ll be on top.
You’re right down there looking up.
On my way to come up here,
I’m gonna see you waiting there.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 13

I’m on my way to get next to you.
I know now that I’m gonna get there.

? & The Mysterians

The gloomy interlude can have a happy ending.

3.1 Continue Standardization Progress

We need to bury our differences at the ISO level and realize that there is a short term need, which
must be Common Lisp, and a long term need, which must address all the issues for practical applica-
tions.

We’ve seen that the right thing attitude has brought us a very large, complex-to-understand, and
complex-to-implement Lisp—Common Lisp that solves way too many problems. We need to move
beyond Common Lisp for the future, but that does not imply giving up on Common Lisp now. We’ve
seen it is possible to do delivery of applications, and I think it is possible to provide tools that make it
easier to write applications for deployment. A lot of work has gone into getting Common Lisp to the
point of a right thing in many ways, and there are viable commercial implementations. But we need
to solve the delivery and integration problems in spades.

Earlier I characterized the MIT approach as often yielding stillborn results. To stop Common Lisp
standardization now is equivalent to abortion, and that is equivalent to the Lisp community giving
up on Lisp. If we want to adopt the New Jersey approach, it is wrong to give up on Lisp, because C
just isn’t the right language for AI.

It also simply is not possible to dump Common Lisp now, work on a new standard, and then stan-
dardize in a timely fashion. Common Lisp is all we have at the moment. No other dialect is ready for
standardization.

Scheme is a smaller Lisp, but it also suffers from the MIT approach. It is too tight and not appropri-
ate for large-scale software. At least Common Lisp has some facilities for that.

I think there should be an internationally recognized standard for Common Lisp. I don’t see what is
to be gained by aborting the Common Lisp effort today just because it happens to not be the best
solution to a commercial problem. For those who believe Lisp is dead or dying, what does killing off
Common Lisp achieve but to convince people that the Lisp community kills its own kind? I wish less
effort would go into preventing Common Lisp from becoming a standard when it cannot hurt to
have several Lisp standards.

On the other hand, there should be a strong effort towards the next generation of Lisp. The worst
thing we can do is to stand still as a community, and that is what is happening.

All interested parties must step forward for the longer-term effort.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 14

3.2 Retain the High Ground in Environments

I think there is a mistake in following an environment path that creates monolithic environments. It
should be possible to use a variety of tools in an environment, and it should be possible for those who
create new tools to be able to integrate them into the environment.

I believe that it is possible to build a tightly integrated environment that is built on an open architec-
ture in which all tools, including language processors, are protocol-driven. I believe it is possible to
create an environment that is multi-lingual and addresses the software lifecycle problem without
imposing a particular software methodology on its users.

Our environments should not discriminate against non-Lisp programmers the way existing environ-
ments do. Lisp is not the center of the world.

3.3 Implement Correctly

Even though Common Lisp is not structured as a kernel plus libraries, it can be implemented that
way. The kernel and library routines can be in the form of .o files for easy linking with other, possibly
non-Lisp, modules; the implementation must make it possible to write, for example, small utility
programs. It is also possible to piggyback on existing compilers, especially those that use common
back ends. It is also possible to implement Lisp so that standard debuggers, possibly with extensions,
can be made to work on Lisp code.

It might take time for developers of standard tools to agree to extend their tools to Lisp, but it cer-
tainly won’t happen until our (exceptional) language is implementedmore like ordinary ones.

3.4 Achieve Total Integration

I believe it is possible to implement a Lisp and surrounding environment which has no discrimina-
tion for or against any other language. It is possible using multi-lingual environments, clever repre-
sentations of Lisp data, conservative garbage collection, and conventional calling protocols to make a
completely integrated Lisp that has no demerits.

3.5 Make Lisp the Premier Prototyping Language

Lisp is still the best prototyping language. We need to push this forward. A multi-lingual environ-
ment could form the basis or infrastructure for a multi-lingual prototyping system. This means
doing more research to find new ways to exploit Lisp’s strengths and to introduce new ones.

Prototyping is the act of producing an initial implementation of a complex system. A prototype can
be easily instrumented, monitored, and altered. Prototypes are often built from disparate parts that
have been adapted to a new purpose. Descriptions of the construction of a prototype often involve
statements about modifying the behavioral characteristics of an existing program. For example, sup-
pose there exists a tree traversal program. The description of a prototype using this program might
start out by saying something like
Lisp: Good News, Bad News, How to Win Big December 2, 2000 15

Let S1 be the sequence of leaf nodes visited by P on tree T1 and S2 the leaf nodes visited by P on
tree T2. Let C be a correspondence between S1 and S2 where f: maps elements to cor-
responding elements.

Subsequent statements might manipulate the correspondence and use f. Once the definition of a leaf
node is made explicit, this is a precise enough statement for a system to be able to modify the tra-
versal routine to support the correspondence and f.

A language that describes the modification and control of an existing program can be termed a pro-
gram language. Program languages be built on one or several underlying programming languages,
and in fact can be implemented as part of the functionality of the prototyping environment. This
view is built on the insight that an environment is a mechanism to assist a programmer in creating a
working program, including preparing the source text. There is no necessary requirement that an
environment be limited to working only with raw source text. As another example, some systems
comprise several processes communicating through channels. The creation of this part of the system
can be visual, with the final result produced by the environment being a set of source code in several
languages, build scripts, link directives, and operating system calls. Because no single programming
language encompasses the program language, one could call such a language an epi-language.

3.6 The Next Lisp

I think there will be a next Lisp. This Lisp must be carefully designed, using the principles for suc-
cess we saw in worse-is-better.

There should be a simple, easily implementable kernel to the Lisp. That kernel should be both more
than Scheme— modules and macros—and less than Scheme—continuations remain an ugly stain
on the otherwise clean manuscript of Scheme.

The kernel should emphasize implementational simplicity, but not at the expense of interface sim-
plicity. Where one conflicts with the other, the capability should be left out of the kernel. One reason
is so that the kernel can serve as an extension language for other systems, much as GNU Emacs uses
a version of Lisp for defining Emacs macros.

Some aspects of the extreme dynamism of Common Lisp should be reexamined, or at least the
tradeoffs reconsidered. For example, how often does a real program do this?

(defun f ...)
(dotimes (...)
 ...
 (setf (symbol-function ’f) #’(lambda ...))
 ...)

Implementations of the next Lisp should not be influenced by previous implementations to make
this operation fast, especially at the expense of poor performance of all other function calls.

The language should be segmented into at least four layers:

1. The kernel language, which is small and simple to implement. In all cases, the need for dynamic
redefinition should be re-examined to determine that support at this level is necessary. I believe
nothing in the kernel need be dynamically redefinable.

S1 S2→
Lisp: Good News, Bad News, How to Win Big December 2, 2000 16

2. A linguistic layer for fleshing out the language. This layer may have some implementational diffi-
culties, and it will probably have dynamic aspects that are too expensive for the kernel but too
important to leave out.

3. A library. Most of what is in Common Lisp would be in this layer.

4. Environmentally provided epilinguistic features.

In the first layer I include conditionals, function calling, all primitive data structures, macros, single
values, and very basic object-oriented support.

In the second layer I include multiple values and more elaborate object-oriented support. The second
layer is for difficult programming constructs that are too important to leave to environments to pro-
vide, but which have sufficient semantic consequences to warrant precise definition. Some forms of
redefinition capabilities might reside here.

In the third layer I include sequence functions, the elaborate IO functions, and anything else that is
simply implemented in the first and possibly the second layers.

These functions should be linkable.

In the fourth layer I include those capabilities that an environment can and should provide, but
which must be standardized. A typical example is defmethod from CLOS. In CLOS, generic func-
tions are made of methods, each method applicable to certain classes. The first layer has a definition
form for a complete generic function -- that is, for a generic function along with all of its methods,
defined in one place (which is how the layer 1 compiler wants to see it). There will also be means of
associating a name with the generic function. However, while developing a system, classes will be
defined in various places, and it makes sense to be able to see relevant (applicable) methods adjacent
to these classes. defmethod is the construct to define methods, and defmethod forms can be placed
anywhere amongst other definitional forms.

But methods are relevant to each class on which the method is specialized, and also to each subclass
of those classes. So, where should the unique defmethod form be placed? The environment should
allow the programmer to see the method definition in any or all of these places, while the real defini-
tion should be in some particular place. That place might as well be in the single generic function
definition form, and it is up to the environment to show the defmethod equivalent near relevant
classes when required, and to accept as input the source in the form of a defmethod (which it then
places in the generic function definition).

We want to standardize the defmethod form, but it is a linguistic feature provided by the environ-
ment. Similarly, many uses of elaborate lambda-list syntax, such as keyword arguments, are examples
of linguistic support that the environment can provide possibly by using color or other adjuncts to
the text.

In fact, the area of function-function interfaces should be re-examined to see what sorts of argument
naming schemes are needed and in which layer they need to be placed.

Finally, note that it might be that every layer 2 capability could be provided in a layer 1 implementa-
tion by an environment.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 17

3.7 Help Application Writers Win

The Lisp community has too few application writers. The Lisp vendors need to make sure these
application writers win. To do this requires that the parties involved be open about their problems
and not adversarial. For example, when an expert system shell company finds problems, it should
open up its source code to the Lisp vendor so that both can work towards the common goal of mak-
ing a faster, smaller, more deliverable product. And the Lisp vendors should do the same.

The business leadership of the AI community seems to have adopted the worst caricature-like traits
of business practice: secrecy, mistrust, run-up-the-score competitiveness. We are an industry that has
enough common competitors without searching for them among our own ranks.

Sometimes the sun also rises.

References

[1] ? & the Mysterians, 96 Tears, Pa-go-go Records 1966, re-released on Cameo Records, Septem-
ber 1966.
Lisp: Good News, Bad News, How to Win Big December 2, 2000 18

