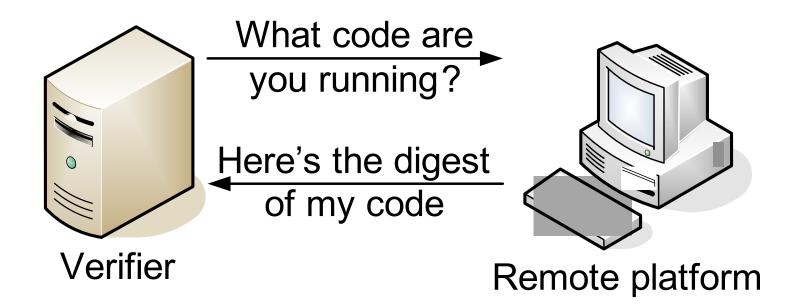
Terra: A Virtual Machine-Based Platform for Trusted Computing by Garfinkel et al.

(Some slides taken from Jason Franklin's 712 lecture, Fall 2006)


Trusted Computing Hardware

- What can you do if you have "trusted" hardware?
 - Immutable, with deep control over the resulting behavior of the machine
 - Can use to guarantee certain behaviors and properties of the machine
- How can you do it?
 - Practically?
 - With legacy O/S and applications?

Primitives of Trusted Computing

- Attestation
 - "I'm running what you think I'm running"
- Secure boot
 - "I can only run what is OK"
 - Less popular approach -- privacy/usability/monopoly concerns
- Note lots of policy/social/legal ?s
 - Can be useful tool
 - e.g., dga's distributed testbed
 - Prevent bots from hijacking bank session
 - Can be used for evil (DRM, lock-in, etc.)
 - "Sorry, can only play this CD under windows!"

Trusting Software

Code attestation enables us to establish trust in a remote platform

Attestation Today

- TCG (formerly known as TCPA) goal is to add secure platform primitives to each client (now the focus is also on servers, cell phones, PDAs, etc.)
- Industry consortium by AMD, IBM, Intel, HP, Microsoft, ...
- These secure platform primitives include
 - Platform integrity measurements
 - Measurement attestation
 - Protected storage
 - Sealed storage
- These can be used to provide trusted boot
- Provides attestation, which enables an external verifier to check integrity of software running on host
 - Goal: ensure absence of malware; detect spyware, viruses, worms ...

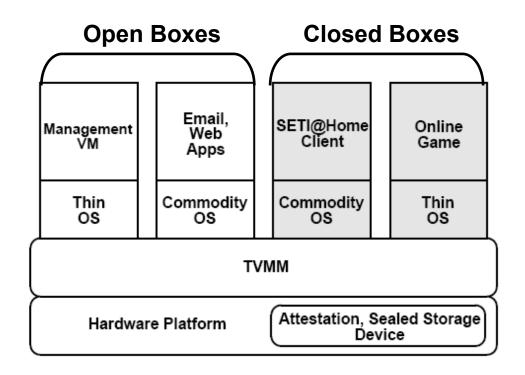
Hardware Attestation Functions

- Starts from the bottom
 - Hash the firmware, bootstrap loader, OS, etc.
 - TPM can sign these with secret key (hardware protected)
- Trusted boot / remote attestation
 - Attest to value of integrity measurements to remote party
- Protected storage
 - Provide "secure" data storage (think smartcard)
 - Secure storage for private key K⁻¹_{TPM}
 - Manufacturer certificate, for example $\{K_{TPM}\}_{K^{-1}IBM}$
- Sealed storage
 - Unlock state under a particular integrity measurement

Terra Argument

- Need to deploy secure systems with commodity computing systems
- Commodity systems (hardware and software) impose "fundamental limitations" on security
 - Poor isolation between applications (processes)
 - Weak mechanisms to authentication applications to peers (distributed computing)
 - No trusted paths between users and trusted computing base (TCB)

Two Worlds


Two Worlds

- Open Box
 - General-purpose
 - Extensible
 - Runs huge body of existing code
 - Economies of scale
 - Rich functionality
 - Few security guarantees

- Closed Box
 - Hardware tamperresistance
 - Embedded
 cryptographic keys
 - Higher assurance than open box

Uniting Two Worlds with a TVMM

 Trusted virtual machine monitor (TVMM) "partitions a single tamper-resistant, general-purpose platform into multiple isolated virtual machines"

Trusted Computing and Closed-box VMs

- Terra's Goal: make closed-box VMs equivalent to dedicated hardware and software of closedbox platforms
 - While still allowing open-box VMs
 - And do it all on general purpose hardware
- TVMM protects privacy and integrity of closedbox VM's contents
 - Applications inside closed-box VM can redefine software stack to suit application
- TVMM can authenticate the contents of a closed-box VM (attestation)

Assumptions

- Assume VMM is free of software vulnerabilities (i.e., trusted)
- Hardware support required
 - Hardware attestation
 - Like the Trusted Computing Group's (TCG's) Trusted Platform Module (TPM)
 - Sealed Storage
 - Decryption (unseal) of data (storage) only possible in same state as during encryption (sealing)
 - Hardware support for virtualization (optional)
 - Intel VT or AMD Pacifica
 - Hardware support for secure I/O (trusted path)
 - Secure counter (optional)
 - Increment only counter
 - Device isolation
 - Countering "attacks from below" by DMA
 - Real-time support
 - Tamper-resistant hardware (not disk but CPU, memory, etc.)

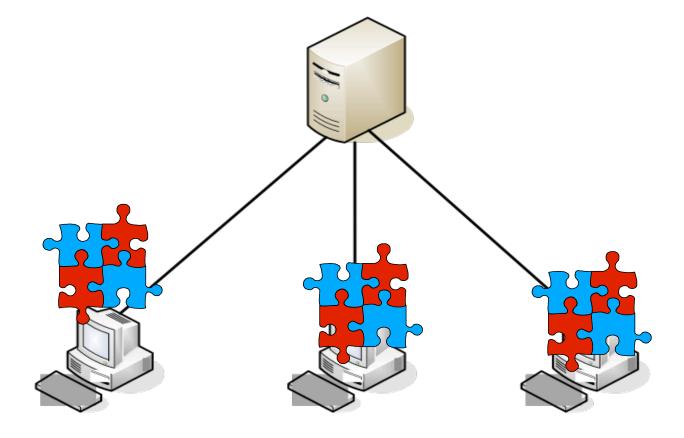
TVMM Revisited

- TVMM provides standard VMM properties:
 - Isolation
 - Each VM runs in own hardware protection domain
 - Extensibility
 - VM is a dedicated platform
 - Efficiency
 - Negligible virtualization overhead
 - Compatibility

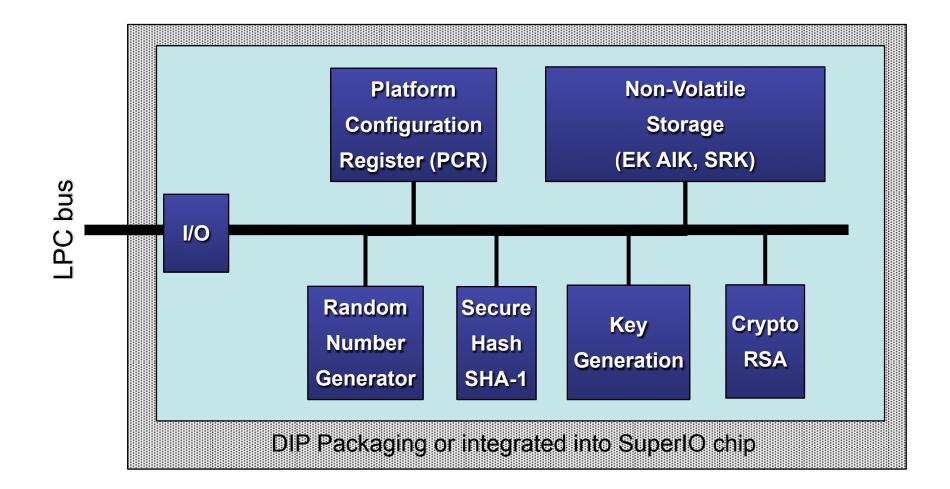
- Email, SETI@Home Client Management VM Online Web Game Apps Thin Commodity Thin Commodity 05 OS OS 05 TVMM Attestation, Sealed Storage Hardware Platform Device
- Zero modifications required to run commodity OSs
- Security
 - Small code size, narrow/stable/well-defined interface (like drivers?)

TVMM Revisited

- TVMM only capabilities:
 - Root secure
 - Security against tampering by root user
 - Attestation
 - Hey peer! What code are you running?
 - Trusted path (unimplemented)
 - Direct to the TCB communication channel with guarantees of data authenticity, secrecy, and integrity


Local Security Model

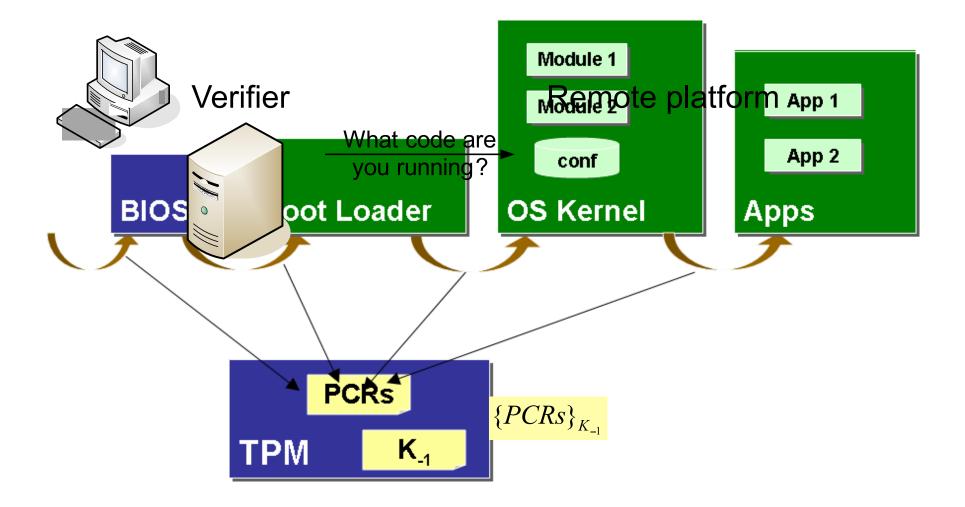
- Two components: *TVMM* and *management VM*
 - TVMM runs at the highest privilege level and is secure against tampering by administrator (root secure)
 - TVMM dictates policy for attestation (all other policy decisions made by management VM)
 - TVMM cannot guarantee availability
 - Management VM
 - Formulates all platform access control and resource management policies
 - Grants access to peripherals, issues CPU and memory limits, etc.
 - Management VM run by platform owner
 - Security guarantees of the TVMM cannot depend on management VM


Application Assurance

- Commodity OS kernels
 - Poor assurance, easily compromised
 - Difficult to reason about isolation
 - Platform security equivalent to security of most vulnerable component
- Terra provides:
 - Strong isolation between VMs
 - Ability to run application-specific OS
 - Attestation to ensure applications only interact with trusted peers
- Assurance of Terra is equivalent to assurance of the OS (TVMM)

Distributed Computation

TCG Trusted Platform Module (TPM)


Basic TPM Functionality

- TPM contains 16 program configuration registers (PCRs) to store integrity measurements
- Operations on PCRs
 - TPM_Extend(N, S): PCR_N = SHA-1(PCR_N | S)
 - TPM_Read(N): Return contents of PCR_N
- TPM contains private key to sign attestations and manufacturer certificate
 - Tamper resistant storage for private key K⁻¹_{TPM}
 - Manufacturer certificate, for example $\{K_{TPM}\}_{K^{-1}IBM}$

Ahead-of-Time (offline) Attestation

Ahead-of-Time (offline) Attestation

Application – Trusted Quake

- Quake multi-player online game vulnerable to client cheating
- Terra provides:
 - Secure communication
 - Client integrity
 - Server integrity
 - Isolation
- Terra can't prevent:
 - Bugs and undesirable features
 - DoS attacks
 - Covert channels

Discussion

- Limited TVMM implementation
 - Do not emulate underlying TCPA hardware (no TPM)
 - No trusted path (lack of hw)
 - Bulky TVMM (VMware GSX Server)
 - No high assurance guarantees (Debian/VMware)
- Some experiences implementing trusted quake and trusted access points
- Tons of discussion and material, much of it based on yet unreleased or alpha technologies
- Lots of we're sorry but we...
 - Don't have special hardware
 - Didn't have source code
 - Didn't implement this or that
- Great deal of foresight into future technologies
- Trusted computing technologies are a available today
 - Terra could be realized almost as predicted

Open Research ?s

- How to build secure systems using TPM?
 - Attestation is potentially ugly!
 - Must attest/trust every version of windows with every combination of patches?!
 - Or do you force WinXP sp2 with IE7 and patches 1, 5, 9, 10?
 - Alternate approch: Gun Sirer's "Nexus" OS
 - Labels that attest to *properties*
 - e.g., "Media player will not copy; will allow only N plays of video"
 - Media can be played by any player that makes those guarantees (some cert. auth. has to sign for them...)

- This is ongoing research
 - Definitely don't know the answers yet!
- What does TPM let us do differently?
 - Where would you draw security bounds differently?
 - How much trust should you export to "trusted" client?
 - Still vulnerable to...
 - maybe: Rogue DMA hardware? RDMA network card??
 - bus analyzer? CPU interposer?
 - government/org. crime with STEM?

Examples to consider

- Fairness / congestion control in networks (most people don't care enough to break; rewards small)
- DDoS prevention (hardware owner probably doesn't want computer being used to launch DDoS)
- Virus scanning (benefits owner of computer)
- Cheating prevention in games (stakes aren't that high...)
- Secure RDMA-like access to NFS with access control performed by trusted local proxy (earlier papers)
- Updating bank balance / securely handling e-cash
- Voting?
- Where to draw the line between {on trusted server, on trusted client, on untrusted client}? What changes?

Building Secure Distributed Systems

- Challenge: Build trustworthy service based on distributed set of potentially untrusted hosts
- Approaches
 - Software security community has proposed mechanisms to harden software to prevent exploits [Prevention]
 - Intrusion detection community has proposed mechanisms for detecting specific attacks or anomalies [Detection and Recovery]
 - Distributed systems community has designed protocols to provide property if up to 1/3 of hosts are compromised (Byzantine hosts) [Resilience]
- Attestation
 - Provide guarantee that correct code is executing on remote host
 - Vendors embed trusted HW in devices providing attestation
 - Exciting new directions for building secure systems