
The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, and Marshall Pease

ACM TOPLAS 1982

Practical Byzantine Fault Tolerance
Miguel Castro and Barbara Liskov

OSDI 1999

Announcements

• Dave is at Hotnets
– TA (James Hendricks) gave lecture

• Outline requested by 11/30
– Not graded, but less sympathy if you skip.

Goals: (1) Ensure you pass, (2) help you cut
down on amount of effort spent

– Feel free to give James drafts of writeup at
any time

A definition

• Byzantine (www.m-w.com):
1: of, relating to, or characteristic of the ancient city of
Byzantium
…
4b: intricately involved : labyrinthine <rules of Byzantine
complexity>

• Lamport’s reason:
“I have long felt that, because it was posed as a cute
problem about philosophers seated around a table,
Dijkstra's dining philosopher's problem received much
more attention than it deserves.”
(http://research.microsoft.com/users/lamport/pubs/pubs.html#byz)

Byzantine Generals Problem

• Concerned with (binary) atomic broadcast
– All correct nodes receive same value
– If broadcaster correct, correct nodes receive

broadcasted value

• Can use broadcast to build consensus
protocols (aka, agreement)
– Consensus: think Byzantine fault-tolerant

(BFT) Paxos

Synchronous Asynchronous

Fail-stop Byzantine

Synchronous, Byzantine world Cool note

Example Byzantine fault-tolerant system:
⇒ Seawolf submarine’s control system

Sims, J. T. 1997. Redundancy Management Software Services for Seawolf
Ship Control System. In Proceedings of the 27th international Symposium on
Fault-Tolerant Computing (FTCS '97) (June 25 - 27, 1997). FTCS. IEEE
Computer Society, Washington, DC, 390.

But it remains to be seen if commodity
distributed systems are willing to pay to
have so many replicas in a system

First protocol: no crypto
• Secure point-to-point links, but no crypto allowed

• Protocol OM(m): Recursive, exponential, all-to-all
– [Try to sketch protocol – see page 388]
– May be inefficient, but shows 3f+1 bound is tight
– [Discuss: Understand that this is for synchronous setup

without crypto!]

• Need at least 3f+1 to tolerate f faulty!
– See figures 1 and 2
– How to fix? Signatures (for example). Or hash

commitments, one-time signatures, etc.

Second protocol: With crypto
• Protocol SM(m)

– [Page 391, but can skip protocol]
– Given signatures, do m rounds of signing

what you think was said. Many messages
(don’t need as many in absence of faults).

– Shows possible for any # of faults tolerated
– [Discuss. Understand: Synchronous, lots of

messages, but possible.]
• [Skip odd topologies. Note that “signature” can be

emulated for random (not malicious) faults.]

Practical Byzantine Fault Tolerance:
Asynchronous, Byzantine

Synchronous Asynchronous

Fail-stop Byzantine

Practical Byzantine Fault Tolerance

•Why async BFT? BFT:
– Malicious attacks, software errors
– Need N-version programming?
– Faulty client can write garbage data, but can’t make

system inconsistent (violate operational semantics)

•Why async?
– Faulty network can violate timing assumptions
– But can also prevent liveness

[For different liveness properties, see, e.g., Cachin, C., Kursawe, K., and Shoup, V. 2000. Random oracles
in constantipole: practical asynchronous Byzantine agreement using cryptography (extended abstract). In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing (Portland,
Oregon, United States, July 16 - 19, 2000). PODC '00. ACM, New York, NY, 123-132.]

Distributed systems
• Async BFT consensus: Need 3f+1 nodes

– Sketch of proof: Divide 3f nodes into three groups of f, left,
middle, right, where middle f are faulty. When left+middle talk,
they must reach consensus (right may be crashed). Same for
right+middle. Faulty middle can steer partitions to different
values!

[See Bracha, G. and Toueg, S. 1985. Asynchronous consensus and broadcast protocols.
J. ACM 32, 4 (Oct. 1985), 824-840.]

• FLP impossibility: Async consensus may not terminate
– Sketch of proof: System starts in “bivalent” state (may decide 0

or 1). At some point, the system is one message away from
deciding on 0 or 1. If that message is delayed, another message
may move the system away from deciding.

– Holds even when servers can only crash (not Byzantine)!
– Hence, protocol cannot always be live (but there exist

randomized BFT variants that are probably live)
[See Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed
consensus with one faulty process. J. ACM 32, 2 (Apr. 1985), 374-382.]

Aside: Linearizability

• Linearizability (“safety” condition) -- two goals:
– Valid sequential history
– If completion of E1 precedes invocation of E2 in

reality, E1 must precede E2 in history

• Why it’s nice: Can reason about distributed
system using sequential specification
• [Can give example on board if time]

[See Herlihy, M. P. and Wing, J. M. 1990. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (Jul. 1990), 463-492.]

Cryptography
• Hash (aka, message digest):

– Pre-image resistant: given hash(x), hard to find x
– Second pre-image resistant: given x, hard to find y such that hash(x) =

hash(y)
– Collision resistant: hard to find x,y such that hash(x) = hash(y)

– Random oracle: hash should be a random map (no structure)

– Assembly SHA1 on 3 GHZ Pentium D -- ~250 MB/s
– Brian Gladman, AMD64, SHA1: 9.7, SHA512:13.4 (cycles/byte)

• MACs: ~1 microsecond, > 400 MB/s (700 MB/s?)
• Signatures: ~150 microseconds – 4 milliseconds

– 150 microseconds: ESIGN (Nippon Telegraph and Telephone)

– (Compare to Castro’s 45 millisecond on PPro 200)

Castro&Liskov use 128-bit AdHash for checkpoints. Broken by Wagner
in 2002 for keys less than 1600 bits.Moral of the story: Beware new
crypto primitives unless they reduce to older, more trusted primitives!

Basic protocol

Plus view change protocol, checkpoint protocol.

Question: When is this not live?
Answer: During successive primary timeouts.
(Compare to Q/U)

Recent systems

[Show network patterns]

Q/U: 5f+1, 1 roundtrip (SOSP 2005)

H/Q: 3f+1, 2 roundtrips (OSDI 2006)

Zyzzyva: 3f+1, 3 one-way latencies but need
3f+1 responsive

Evaluation
• Only implemented parts of protocol that

mattered for evaluation/analysis
– Hint: Not a bad idea for 712 projects!

• NFS loopback trick is pretty standard -- good
idea for prototyping

• Tolerate 1 fault, use multicast.
• BFT prototype: no disk writes

– NFS server: disk writes for some operations!
– Explanation: Replication provides redundancy
– Is this a fair comparison? How about BFS vs

replicated NFS?

