Paxos

15-712 Fall 2007

Some slides 1n this lecture borrowed from Mike
Reiter, Robert Morris



(Several slides in this section borrowed from):
Introduction to Agreement Algorithms

Mike Reiter

11/01/2006 2



Distributed Systems

» A collection of computing devices that can communicate with
each other

 How are distributed systems different from sequential ones?
—May be impossible to observe the global state
—Can incur partial failures (devices or communication)

—Measures are different
* Time is still important, but messages are, too

—Much more difficult to reason about and get right

11/01/2006 3



Agreement Problems

* High-level goal: Processes in a distributed system reach
agreement on a value

* Numerous problems can be cast this way
— Transactional commit, atomic broadcast, ...

* The system model is critical to how to solve the agreement
problem—or whether it can be solved at all

— Failure assumptions
— Timing assumptions

11/01/2006 4



Failure Model

» A process that behaves according to its |/O specification
throughout its execution is called correct

* A process that deviates from its specification is faulty
* There are many gradations of faulty. Two of interest are:

Byzantine failures
No assumption about
behavior of a faulty process.

11/01/2006 5



Timing Model

* Specifies assumptions regarding delays between
— execution steps of a correct process
—send and receipt of a message sent between correct processes

» Again, many gradations. Two of interest are:

Asynchronous

No assumptions about message
and execution delays

(except that they are finite).

11/01/2006 6



Today

» Crash-failure
* Asynchronous

* Next week:
— Byzantine failure
— Sync & Async

11/01/2006



Consensus

» Each process begins with a value
» Each process can irrevocably decide on a value
 Up to # < n processes may be faulty

* Problem specification
— Termination: Each correct process decides some value.
— Agreement: Correct processes do not decide different values.

— Validity: If all processes begin with the same input, then any value decided by a
correct process must be that input.

11/01/2006 8



Consensus: Synchronous Crash Model

-

Algorithm for (%))
S; <= {initial value}

fork=1... t+]
send §; to all processes

receive §; from < forallj
J

S, < S, U[UsS,
J
decide min(JS))

11/01/2006



Example with ¢ =1

End of End of
round 1 round 2

{1} {0,1} decide 0

{0,1} {0,1} decide 0

U

11/01/2006 10



Consensus: Asynchronous Crash Model

Theorem [Fischer, Lynch, Paterson]: There is no algorithm to solve
consensus in an asynchronous system forany ¢ = 1.

At least, if you want termination.
But that's okay - we'll scrap that requirement...

11/01/2006 11



Refresher

11/01/2006

12



Refresher

e 2-phase commit
—Have to wait for all nodes + coord to be up
—Have to know how each node voted
—coord must be up to decide

—Works, but system 1s down while any one
component is down: long repair times

13



Back to State Machine Replication

* Works for any replicated service
—storage, lock server (Google’s chubby), etc.

—Every replica must see same operations in same
order

e If deterministic ops, all replicas will be in same state

14



Strawman: Primary/Backup

* Primary assigns order of ops, sends them to all
replicas
—What if primary fails?
 What about operation in flight when primary failed?

* Need to pick a new primary

e But can’t have two, or order is wrong!

—Simple approaches don’t work

e Lowest #°d server? Partition / lost pings => 2 primaries

15



Basic system structure

* Ordinary (non-failure) operation:
—Pick a primary
—Let it sequence things
—Works efficiently and happily

* But make sure that on failure
—The system 1s always correct

—How can we do this?

16



Agreement

e [eader chooses proposed value to agree on
—Broadcasts to all participants, tries to assemble
majority
—If majority respond, life 1s good
 What if leader crashes after contacting only
some nodes?
 What if got majority, then failed?

 What 1f two leaders simultaneously?

17



Paxos

e Three phases

— Each node maintains state:
* Na, Va: Highest N that node has accepted and value V
e Np: highest N seen in any PREPARE

e Phase 1:

— Some node decides it’s a leader
— Picks unique proposal # n > higher known #s
— Sends PREPARE(n) to every node
— recv(PREPARE(n)):
— ifn>Np
e return RESPONSE(Na, Va)
* Np=n

18



Phase 1

)PREPARE(n) @

19



Phase 2

e If response from majority of nodes
— If RESPONSE(n, v) has a value

e v = value of highest n

* else v = pick anything
—send ACCEPT(n, v) to all nodes
e on recv(ACCEPT(n,v))
—ifn>=Np

e Na=n

ACCEPT(n,v)
" B
REPORT

*Va=v
 If majority accept, we have a value!
—But we might not know! Leader crash b4 repgrt...



Phase 3

e Tell everyone the

agreed-upon NFORM(“’V);@
answer

21



Failures: Multiple Leaders

e Two leaders must use different »
— Augment n with node ID, etc.

e A: PREPARE(S)

e A B,C: RESPONSE(, v)

e D: PREPARE(6)

e B,C,D: RESPONSE(6,v)

e A: ACCEPT(5, v)

e B.C: No! We want to hear >=6
e A: PREPARE(7)

e D: ACCEPT(6, v)

e B.C: No! We want to hear >=7

. o0 0 22



Multiple Leaders

e Can continue forever
—But won’t in most failures
—Broadcast leader election, random backofft, etc.

—Could even use more robust leader election (may be
useful in wide-area): gossip, etc.

23



Ieader failure

* Before sending ACCEPTs

—Some other node will decide to become leader
—OId leader never reached agreement, so just ignore

—QOur new N > old N will ensure that their old
requests are flushed out even if they’re delayed

24



Failure after sending ACCEPT?

* Key 1dea:
—Once a majority agrees, it can never un-agree

—Why? They send back the value they agreed upon

* Two majorities must overlap, so new leader will always
hear old agreed-upon value

e If leader hears a v, it must pick that v as its own

* (Same as ensuring correctness with two
leaders (but not progress))

25



Requires persistence

* ¢.g., node reboot after RESPONSE
—L1 PREPARE(10). node X Np =10
—L2: PREPARE(11); majority intersecting only at
node X response. node X Np =11
e L2 picks a value v=200
— X crashes & reboots, resets Np (ERROR!)

—L1 sends ACCEPT(n=10, v=100)
e [t’s accepted! Node X forgot...

L1 majority | L2 majority

26




Optimizations

* Doing this every time 1s expensive
—Can amortize across multiple requests using a view

—Use Paxos to agree on a {leader, view, participant
set}

—First req from new leader: Normal paxos

—Subsequent reqgs: Directly send “accept”, respond
back “accepted”.

27



Paxos 1n Practice

 Example: Google’s “Chubby” lock server

—Uses paxos to manage locks & leases & leader
election

—But then most services use cheaper mechanisms
(e.g., using the leader)

—Much like the optimizations to using Paxos itself

e Pick a leader, let it do the work in the absence of
failures

28



