
Paxos

15-712 Fall 2007

Some slides in this lecture borrowed from Mike

Reiter, Robert Morris

11/01/2006 2

(Several slides in this section borrowed from):
Introduction to Agreement Algorithms

Mike Reiter

11/01/2006 3

Distributed Systems

• A collection of computing devices that can communicate with
each other

• How are distributed systems different from sequential ones?

– May be impossible to observe the global state

– Can incur partial failures (devices or communication)

– Measures are different

• Time is still important, but messages are, too

– Much more difficult to reason about and get right

11/01/2006 4

Agreement Problems

• High-level goal: Processes in a distributed system reach
agreement on a value

• Numerous problems can be cast this way

– Transactional commit, atomic broadcast, …

• The system model is critical to how to solve the agreement
problem!or whether it can be solved at all

– Failure assumptions

– Timing assumptions

11/01/2006 5

Byzantine failures
No assumption about

behavior of a faulty process.

Failure Model

• A process that behaves according to its I/O specification
throughout its execution is called correct

• A process that deviates from its specification is faulty

• There are many gradations of faulty. Two of interest are:

Crash failures
A faulty process
halts execution

prematurely.

11/01/2006 6

Asynchronous
No assumptions about message

and execution delays

(except that they are finite).

Timing Model

• Specifies assumptions regarding delays between

– execution steps of a correct process

– send and receipt of a message sent between correct processes

• Again, many gradations. Two of interest are:

Synchronous
Known bounds on message

 and execution delays.

11/01/2006

Today

• Crash-failure

• Asynchronous

• Next week:

– Byzantine failure

– Sync & Async

7

11/01/2006 8

Consensus

• Each process begins with a value

• Each process can irrevocably decide on a value

• Up to t < n processes may be faulty

• Problem specification

– Termination: Each correct process decides some value.

– Agreement: Correct processes do not decide different values.

– Validity: If all processes begin with the same input, then any value decided by a
correct process must be that input.

11/01/2006 9

Consensus: Synchronous Crash Model

Algorithm for :
Si " {initial value}

for k = 1 … t+1

send Si to all processes

receive Sj from for all j

decide min(Si)

i

j

11/01/2006 10

{1} {0,1}

Example with t = 1

1

2

3

{0}

{1}

{1}
{0,1}

End of
round 1

{0,1}

decide 0

decide 0

End of
round 2

11/01/2006 11

Consensus: Asynchronous Crash Model

Theorem [Fischer, Lynch, Paterson]: There is no algorithm to solve
consensus in an asynchronous system for any t # 1.

At least, if you want termination.

But that’s okay - we’ll scrap that requirement...

11/01/2006

Refresher

12

Refresher

• 2-phase commit

–Have to wait for all nodes + coord to be up

–Have to know how each node voted

–coord must be up to decide

–Works, but system is down while any one

component is down: long repair times

13

Back to State Machine Replication

• Works for any replicated service

–storage, lock server (Google’s chubby), etc.

–Every replica must see same operations in same

order

• If deterministic ops, all replicas will be in same state

14

Strawman: Primary/Backup

• Primary assigns order of ops, sends them to all

replicas

–What if primary fails?

• What about operation in flight when primary failed?

• Need to pick a new primary

• But can’t have two, or order is wrong!

–Simple approaches don’t work

• Lowest #’d server? Partition / lost pings => 2 primaries

15

Basic system structure

• Ordinary (non-failure) operation:

–Pick a primary

–Let it sequence things

–Works efficiently and happily

• But make sure that on failure

–The system is always correct

–How can we do this?

16

Agreement

• Leader chooses proposed value to agree on

–Broadcasts to all participants, tries to assemble

majority

–If majority respond, life is good

• What if leader crashes after contacting only

some nodes?

• What if got majority, then failed?

• What if two leaders simultaneously?
17

Paxos

• Three phases

– Each node maintains state:

• Na, Va: Highest N that node has accepted and value V

• Np: highest N seen in any PREPARE

• Phase 1:

– Some node decides it’s a leader

– Picks unique proposal # n > higher known #s

– Sends PREPARE(n) to every node

– recv(PREPARE(n)):

– if n > Np

• return RESPONSE(Na, Va)

• Np = n
18

Phase 1

19

A

DC

B
PREPARE(n)

Phase 2

• If response from majority of nodes

– If RESPONSE(n, v) has a value

• v = value of highest n

• else v = pick anything

– send ACCEPT(n, v) to all nodes

• on recv(ACCEPT(n,v))

– if n >= Np

• Na = n

• Va = v

• If majority accept, we have a value!

–But we might not know! Leader crash b4 report...20

A B
ACCEPT(n,v)

REPORT

Phase 3

• Tell everyone the

agreed-upon

answer

21

A B
INFORM(n,v)

Failures: Multiple Leaders

• Two leaders must use different n
– Augment n with node ID, etc.

• A: PREPARE(5)

• A,B,C: RESPONSE(5, v)

• D: PREPARE(6)

• B,C,D: RESPONSE(6,v)

• A: ACCEPT(5, v)

• B,C: No! We want to hear >= 6

• A: PREPARE(7)

• D: ACCEPT(6, v)

• B,C: No! We want to hear >= 7

• ... 22

Multiple Leaders

• Can continue forever

–But won’t in most failures

–Broadcast leader election, random backoff, etc.

–Could even use more robust leader election (may be

useful in wide-area): gossip, etc.

23

Leader failure

• Before sending ACCEPTs

–Some other node will decide to become leader

–Old leader never reached agreement, so just ignore

–Our new N > old N will ensure that their old

requests are flushed out even if they’re delayed

24

Failure after sending ACCEPT?

• Key idea:

–Once a majority agrees, it can never un-agree

–Why? They send back the value they agreed upon

• Two majorities must overlap, so new leader will always

hear old agreed-upon value

• If leader hears a v, it must pick that v as its own

• (Same as ensuring correctness with two

leaders (but not progress))

25

Requires persistence

• e.g., node reboot after RESPONSE

–L1 PREPARE(10). node X Np = 10

–L2: PREPARE(11); majority intersecting only at

node X response. node X Np = 11

• L2 picks a value v=200

–X crashes & reboots, resets Np (ERROR!)

–L1 sends ACCEPT(n=10, v=100)

• It’s accepted! Node X forgot...

26

X

L1 majority L2 majority

Optimizations

• Doing this every time is expensive

–Can amortize across multiple requests using a view

–Use Paxos to agree on a {leader, view, participant

set}

–First req from new leader: Normal paxos

–Subsequent reqs: Directly send “accept”, respond

back “accepted”.

27

Paxos in Practice

• Example: Google’s “Chubby” lock server

–Uses paxos to manage locks & leases & leader

election

–But then most services use cheaper mechanisms

(e.g., using the leader)

–Much like the optimizations to using Paxos itself

• Pick a leader, let it do the work in the absence of

failures

28

