
Decoupling indexing from

correctness for improved

concurrency

(and other good things)

15-712 Fall 2007

Efficient Locking for Concurrent

Operations on B-Trees.

Lehman81: Philip Lehman, S. Bing Yao.

ACM Trans. on Database Systems

(TODS), vol 6, no 4, December 1981.

Guest Appearance

• The Chord Distributed Hash Table (DHT)
– Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Service for Internet

Applications, ACM SIGCOMM 2001, San Deigo, CA, August 2001, pp. 149-160.

3

B-tree Index Access

• B-Trees common concurrent data structure

– Indices for databases of all kinds

– Good at fixed, short depth of tree for fast lookup

• Based on all nodes having a min and max number of keys, and

splitting or redistributing keys to nodes (rebalancing)

– Insertion & deletion can change many nodes

• if the tree becomes unbalanced, parent nodes must be updated,

which can split or merge them, continuing up to the root

Eg. Splitting a B-Tree

• Add item with key 47

– Node for 47 is full

– Split node into two

– Add entry in parent

• If parent is full

– Propogate split up

• Delete is messier still

– To preserve constant

depth, may need to

rotate keys from a

sibling or compress a

whole level

Concurrent Access Problems

• Indices are shared data

structures with high

concurrency

– specialize concurrency

control

6

Lock-based Concurrency Control

• Used by most databases today for all applic code

– Inside any transaction, all accessed data is protected by

read/write locks & stored in shadow pages or undo logs

(later lecture) until changes are committed & written

– All locks acquired are held until transaction is done (!)

– So concurrent transactions sharing any page are

serialized by page locks, that is, with respect to shared

pages, execute one at a time

– Beware deadlocks -- if locks cannot be hierarchicalized,

then detect lock cycles and break with abort & rollback

Concurrent B-tree Access

• Simple: lock all nodes that might change as you
look for point of insertion

– But this locks top of tree, blocking everything else

• Bayer77: don’t write lock top of tree on first try;
hope splitting will not need to change top of tree

– If wrong, abort and retry holding all write locks

B-Link-Tree Example
Lehman81: more concurrency

• Small maximum number of locks held (3)

• Readers are never blocked; tree is always valid

– Reader may “miss” concurrent insertion

• B-link-tree adds same-level next-node link

– New pointer points to node at same level with next key

– Reader searching a node being split may see new “highest

value” smaller than search key, & go on to next node

– Effectively hides splitting from concurrent readers until the

atomic update of the parent pointer

– Writers only lock an individual node wrt other writers

– Careful coding of split/rebalance needed

– Useful for fast range scans too

• “Disk” ops get(), put() are indivisable (atomic)

Readers never lock!

• What atomic ops make not locking work?

Reading re-written

node n = root

while (n.type != TYPE_LEAF) {

 n = n.scan_for(key)

} /* log(n) */

while ((c = n.scan_for(key)) == n.link) {

 n = c

} /* linked list traversal */

if (n.contains(key)) return n.lookup(key)

return NULL

12

Insertion

• Inserted value

appears at step c,

although f still

not updated

• Is tree always

balanced?

– no? so why is

approach used?

– trade weakening

of maximal

comparisons for

more concurrency

Insertion

• Nasty code!

• Livelock possible

• Eraser would ….

Deletion

• “allow fewer than k entries in a leaf node”

– far simpler than one that requires underflows ad

concatenations

– uses a “little” extra storage (and comparisons)

– if needed defragment with batch reoganization locking

whole tree

• Possibly a cop-out: Slower worst-case

• But may avoid unnecessary merges w/later insert

• it would be better if there was a GFS-like background process

renormalizing the B-link tree

15

Eval

• Proof-based, part of theoretical DB work

– Makes assumptions about primitives, OS functions and
invariants (so proof must be tested :-)

• Some subsequent use of these methods

– Boxwood at MSR

• Fragile code!

– Not a database transaction ….

• Gives up balance properties for unknown duration

– Worst case analysis gets worse, normal case better

Context & Comparison

• Not transaction locking

– May still need to ensure consistency btwn

multiple read/writes (Kung does this; Lehman

does not!)

• Thoughts?

17

Technique

• Correctness depends on link pointers

– Some operations could (very rarely!) degrade to

a linked-list traversal

• Similar in “feel” to some DHT techniques,

like Chord

– Consistent Hashing

– Node IDs = hash(node IP), mapped in circular

128-bit (or whatever) key space

– Items “belong” to successor node 18

Operation

• Node insertion:

– Search for yourself in the ring

• succ = ring_search(me)

– Update your predecessor

• me.next = succ

• pred.next = succ.prev

– Quick insertion == correctness, but

19

Optimizing searches

• Finger table

– Points 1/2, 1/4, 1/8th of way around the ring

• How to find? Search for items in those spaces!

• Finger table (“index!”) correctness not

critical for integrity

– Can always fall back to linear search

– But provides eventual efficiency

20

Points

• Decoupled optimization and correctness

good for distributed implementation

– Sagiv’s B*-link tree variant

– Chord’s “finger table”

– Skip-list based approaches

21

