Decoupling indexing from
correctness for improved
concurrency
(and other good things)

15-712 Fall 2007

Efficient Locking for Concurrent
Operations on B-Trees.

Lehman81: Philip Lehman, S. Bing Yao.
ACM Trans. on Database Systems
(TODS), vol 6, no 4, December 1981.

Guest Appearance

e The Chord Distributed Hash Table (DHT)

— Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Service for Internet

Applications, ACM SIGCOMM 2001, San Deigo, CA, August 2001, pp. 149-160.

B-tree Index Access

e B-Trees common concurrent data structure
— Indices for databases of all kinds
— Good at fixed, short depth of tree for fast lookup

¢ Based on all nodes having a min and max number of keys, and
splitting or redistributing keys to nodes (rebalancing)

— Insertion & deletion can change many nodes

* if the tree becomes unbalanced, parent nodes must be updated,
which can split or merge them, continuing up to the root

Eg. Splitting a B-Tree

* Add item with key 47 F
— Node for 47 is full

— Split node into two

[42 951 958 971 « 74 |

— Add entry in parent / l 1 l \

 [f parent is full
— Propogate split up

[»--- 51 ZEU
¢ Delete is messier still / \

— To preserve constant
depth, may need to (292 qa7 g50] [y 58 ¢ 71 474]

rotate keys from a / l l l l \

sibling or compress a -
Whole level Fig. 4. Splitting a node after adding “47" (k = 2).

Concurrent Access Problems

* Indices are shared data N ETET
structures with high
concurrency
.. Y 8 10 12 15
— spemahze concurrency
(a)
control ’
x| p g 10 ¢ 15 4]
search(15) insert(9)
1. Tereadlx) -
2 A «read(x)
3. examine C; get ptr toy
g. Zxamine'ﬁ; get ptr toy
6: ins:rtrgainé)A; must split into.A, B 7 I 8 9 10] r: l 2 15 l
7. put(B, y')
8 put(4, y) (b)
9. Add to node x a pointer to node y'.
10. C « read(y) Fig.5. C le to naive h
11. error: 15 not found! v

Lock-based Concurrency Control

* Used by most databases today for all applic code

— Inside any transaction, all accessed data is protected by
read/write locks & stored in shadow pages or undo logs
(later lecture) until changes are committed & written

— All locks acquired are held until transaction is done (!)

— So concurrent transactions sharing any page are
serialized by page locks, that is, with respect to shared
pages, execute one at a time

— Beware deadlocks -- if locks cannot be hierarchicalized,
then detect lock cycles and break with abort & rollback

Concurrent B-tree Access

e Simple: lock all nodes that might change as you
look for point of insertion
— But this locks top of tree, blocking everything else
e Bayer77: don’t write lock top of tree on first try;
hope splitting will not need to change top of tree
— If wrong, abort and retry holding all write locks

Lehman81: more concurrency

B-Link-Tree Example

¢ Small maximum number of locks held (3)

* Readers are never blocked; tree is always valid
— Reader may “miss” concurrent insertion

¢ B-link-tree adds same-level next-node link

— New pointer points to node at same level with next key

— Reader searching a node being split may see new “highest

- “7" <= /l‘ = \ > value” smaller than search key, & go on to next node

— Effectively hides splitting from concurrent readers until the

- (M 38 , 51 451 e—»{W 53 556 56 e - atomic update of the parent pointer
— Writers only lock an individual node wrt other writers
Key:46 Key:5! Key:53 Key:56
<A | | <assaciated | | <associated | [< g — Careful coding of split/rebalance needed

— Useful for fast range scans too
Fig.7. A B"-tree.

e “Disk” ops get(), put() are indivisable (atomic)

Readers never lock! Reading re-written

* What atomic ops make not locking work? node n = root
while (n.type != TYPE LEAF) {

x « scannode(v, A) denotes the operation of examining the tree node in n=n. scan_for (key)

memory block A for value v and returning the appropriate pointer from A

(into x). } / * log (n) * /
procedure search(v)
current « root; /* Get ptr to root node */
A « get(current); /* Read node into memory */ . .
while current is not a leaf do while ((c¢ = n.scan for(key)) == n.link) {
begin /* Scan through tree */ -
current « scannode(v, A); /* Find correct (maybe link) ptr */ n =2~oe
A « get(current) /* Read node into memory */ . .
end; } /* linked list traversal */

/* Now we have reached leaves. */
while ¢ « scannode(v, A) = link ptr of A do
/* Keep moving right if necessary */

becgul;em‘_r if (n.contains(key)) return n.lookup(key)
:‘-Ket(cu;'rent) /* Get node */ return NULL
end;

/* Now we have the leaf node in which v should exist. */
if v is in A then done “success” else done “failure”

Insertion
SoE a0

* Inserted value
appears at step c, w ®
although f still
not updated

* Is tree always
balanced?
— no? so why is
approach used?

— trade weakening
of maximal

CompariSOHS for Fig.8. Splitting node a into nodes a’ and b’ (Note that (d) and () show identical structures)
more concurrency

procedure insert(v)

initialize stack; /* For remembering ancestors */
current « root;

A « get(current);

Insertion i PR

current « scannode(v, A);
if new current was not link pointer in A then
push(e); /* Remember node at that level */
A « get(current)
end:

S——
A « get(current);

e Nasty code! o /Moy
if v is in A then stop “v already exists in tree”; /* And ¢ points to its record */

w « pointer to pages allocated for record associated with v;

. . Doinsertion:
if A is safe then

* Livelock possible &
A « node.insert(A, w, v); /* Exact manner depends if current is a leaf */
put(A, current);

° E 1 d t:lmo];:{cm;;nl): /* Success—done buku-cl::;(*/

end else begin /* Must split node */
raser would et now page for B
A, B « rearrange old A, adding v and w, to make 2 nodes,
‘where (link ptr of A, link ptr of B) « (u, link ptr of old A);

¥ « max value stored in new A; /* For insertion into parent */
Put(B, u); /* Insert B before A */
Put(A, current); /* Instantaneous change of 2 nodes */
oldnode « current; /* Now insert pointer in parent */
Ve
w e u;
current « pop(stack); /* Backtrack */
lock(current); /* Well ordered */
A « get(current);
‘move.rig] /* If necessary */
unlock(oldnode);

goto Doinsertion /* And repeat procedure for parent */
ena

procedure move.right

while ¢ « scannode(v, A) is a link pointer of A do

begin /* Move right if necessary */
lock(e); /* Note left-to-right locking */
unlock(current);
current « ¢;

A « get(current);

end

Deletion

* “allow fewer than k entries in a leaf node”
— far simpler than one that requires underflows ad
concatenations
— uses a “little” extra storage (and comparisons)

— if needed defragment with batch reoganization locking
whole tree
* Possibly a cop-out: Slower worst-case
* But may avoid unnecessary merges w/later insert

¢ it would be better if there was a GFS-like background process
renormalizing the B-link tree

Eval

* Proof-based, part of theoretical DB work
— Makes assumptions about primitives, OS functions and
invariants (so proof must be tested :-)
* Some subsequent use of these methods
— Boxwood at MSR
* Fragile code!
— Not a database transaction
[]

Gives up balance properties for unknown duration
— Worst case analysis gets worse, normal case better

Context & Comparison

* Not transaction locking

— May still need to ensure consistency btwn
multiple read/writes (Kung does this; Lehman
does not!)

e Thoughts?

Technique

* Correctness depends on link pointers

— Some operations could (very rarely!) degrade to
a linked-list traversal

e Similar in “feel” to some DHT techniques,
like Chord
— Consistent Hashing

— Node IDs = hash(node IP), mapped in circular
128-bit (or whatever) key space

— Items “belong” to successor node 8

Operation

e Node insertion:
— Search for yourself in the ring
* succ =ring_search(me)
— Update your predecessor

* me.next = succ

* pred.next = succ.prev

— Quick insertion == correctness, but

Optimizing searches

* Finger table
— Points 1/2, 1/4, 1/8th of way around the ring

* How to find? Search for items in those spaces!

* Finger table (“index!”) correctness not
critical for integrity

— Can always fall back to linear search

— But provides eventual efficiency

20

Points

* Decoupled optimization and correctness
good for distributed implementation

— Sagiv’s B*-link tree variant
— Chord’s “finger table”
— Skip-list based approaches

21

