
On Optimistic Methods for

Concurrency Control.

 Kung81: H.T. Kung, John Robinson.

ACM Transactions on Database Systems

(TODS), vol 6, no 2, June 1981.

Birth of Optimistic Methods

• Lovely, complex, very concurrent transactions

• Spawned much subsequent systems theory

• Basic tradeoff between go slow & safe vs go fast
and clean up after yourself

• Driven by database sensibility:

– Single threaded access to huge database means
blocking all work waiting for disk pages to load

– Instead, lots of operations in database, some waiting for
disks while others work, but protect DB integrity
(which is application specific, assumed correct for each
transaction running serially)

Client code

LOCK

lookup

{client logic}

lookup

{logic}

...

write

UNLOCK

DB/FS/etc.

read several pages

read several pages

write pages

- Time to load

pages from

disk

- Network

latency
- Client

processing

time

Basic performance arg

• Locking slows down common path

– Overhead of locking, reduced concurrency because
locks too big, and, the big problem, held too long

• But given millions of different data records,
probability of conflict for 2 changes is tiny

– Cheaper to “hope for the best” but

– check for conflict near the end of your work and abort/
clean up if real conflict occurred

• Assumes disk & memory read/write atomic

– Real world CPUs (Eraser & Alpha) may relax this

• In virtual time, database is (passive) process

– reads & writes are messages from and to it

Basic Implementation

• Organize transactions to work on private copies

• At end of transaction, “validate” correctness of

private copy changes

• If valid, then make copies permanent

• Divides each transaction into:

– DB read phase (making copies), validation phase &

write (copyback) phase

• Doesn’t lock DB during client logic computation

• Groups reads & writes of same blocks close in time

• “Pre-fetches” blocks for validation/write phase

Client code

BEGIN

lookup

{client logic}

lookup

{logic}

...

write

END

DB/FS/etc.

read several pages

read several pages

write shadow copy of

pages

Tentative

stateValidate

Write

Real state

or rollback

Validation: Serializability

• Separately test all transactions consistent

– Running alone on database, transaction assumed correct

• Make transaction codes independent of each other

– Happens-before only property of (data) values in db

• All serial orderings of “concurrent” transactions
are valid

• Allow concurrent running if transformations are
same as transforms possible from a serial order

– Serializable

Basic approach: transaction IDs

• Serializability means a serial ordering exists

• Select ID for each transaction a priori

– Force DB updates to be equivalent to serial execution in
numeric order of ID values

– In validation phase, abort & retry transactions that would
not meet this condition

• Transforms lock queueing slowdowns for the risk of
not making progress

– ID selected at “begin” less concurrent if some read
phases run much longer

– Delay ID choice until validation or later to reduce aborts

Conditions for validity

• For i<j, Transaction Ti must “precede” Tj

• 1) Ti ends copyback before Tj reads start, or

– Actually serial ordering

• 2) Tj reads nothing Ti writes and Ti ends copyback
before Tj starts copyback, or

– Overlap of Tj reading with Ti copyback is harmless &
Tj copyback is serialized after Ti copyback

• 3) Tj reads & writes nothing Ti writes and Ti ends
reading before Tj ends reading

– Overlap of Ti copyback with Tj reads because Ti can’t
hurt Tj, but Tj might hurt Ti if its writes start too soon

• 1) Ti ends copyback before Tj reads start

• 2) Tj reads nothing Ti writes and Ti ends copyback
before Tj starts copyback, or

• 3) Tj reads & writes nothing Ti writes and Ti ends
reading before Tj ends reading

r wv

r wv

r wv

r wv

r wv

r wv

Simple testing of sets

• Long critical section if copyback slow

Lock

Unlock

More parallelism

• Test clearly preceding (no longer changing)

transactions outside critical section

Even more parallelism

• Add ordered testing of condition 3

Space issues

• What if run out of space for sets?

– Abort & retry

• What about repeated abort & retry?

– Hold critical section in a retry (ugh)

Applic to B-trees

• Models B-trees with lots of entries in each page

(199), uniform key insertion, interior nodes

cacheable and leaf pages not cacheable

• Does consider splitting a leaf, but apparently not

rotating tree to maintain balance (not needed if

inserts are uniform :-)

• Concludes for such B-trees that conflict, abort and

restart will be rare (0.07%)

Eval

• Thought experiment

– Not fair as really a database theory paper then

• Analysis of B-tree not appropriate

– Really should have modeled rotations as “randomness”

is far too unlikely

• Very influential: “optimistic methods” is current

label of anything trying first then checking if it

had a conflict and undoing it

Lock-based Concurrency Control

• Used by most databases today

– Inside any transaction, all accessed data is protected by

read/write locks & stored in shadow pages or undo logs

(later lecture) until changes are commited & written

– All locks acquired are held until transaction is done (!)

– So concurrent transactions sharing any page are

serialized by page locks, that is, with respect to shared

pages, execute one at a time

– Beware deadlocks -- if locks cannot be hierarchicalized,

then detect lock cycles and break with abort & rollback

• If no conflicting

writes, longer Tx

better

• But possibly

harder for app to

rollback

• What about non-

transactional

apps? 18

Client code

BEGIN

lookup

{client logic}

lookup

{logic}

...

write

END

Speculative Execution

• Example: Unmodified apps using an NFS

server

– Clients cache data, but

– For consistency, NFS ops are all sync

• Client-server latency greatly slows things

down

19 20

synchronous RPCs, it can increase the latency of individual
RPCs. Before a server can accept a file modification or grant
a client exclusive access to a file, it must first synchronously
revoke any callbacks or leases held by other clients. Po-
tentially, a well-connected client must wait on one or more
poorly-connected clients. Speculator would help hide the la-
tency of these expensive operations. Thus, we expect that
file systems that use leases or callbacks would see substan-
tial benefit from Speculator, even though the relative benefit
would be less than that seen by file systems that use polling.

Speculator also reduces the cost of providing safety guar-
antees. AFS, Coda (in its strongly-connected mode), and
NFS write file modifications synchronously to the server
on close. Directory caching in these file systems is write-
through. Speculator would substantially improve write per-
formance in these file systems by hiding the latency of these
synchronous operations. Since file modifications may not be
written back to the server until the file is closed, data can
be lost in the event of a system crash. Echo caches mod-
ifications for longer periods of time and writes back mod-
ifications asynchronously (unless a lease is revoked). This
improves performance by reducing the number of synchro-
nous RPCs but increases the size of the window during which
data can be lost due to system crashes.

To date, file system designers have had to choose whether
to provide strong consistency guarantees, strong safety guar-
antees, or good performance. Speculative execution changes
this equation by eliminating synchronous communication.
As our BlueFS results in the next section demonstrate: a
distributed file system using Speculator can provide the
safety of synchronous I/O, as well as single-copy semantics,
and still perform better than current file systems.

8. EVALUATION
Our evaluation answers two questions:
• How much does Speculator improve the performance

of an existing file system (NFS)?

• With Speculator, what is the performance impact of
providing single-copy file semantics and synchronous
I/O (in BlueFS)?

8.1 Methodology
We use two Dell Precision 370 desktops as the client and

file server. Each machine has a 3 GHz Pentium 4 processor,
2 GB DRAM, and a 160 GB disk. We run RedHat Enterprise
Linux release 3 with kernel version 2.4.21. To insert delays,
we route packets through a Dell Optiplex GX270 desktop
running the NISTnet [4] network emulator. All comput-
ers communicate via 100 Mb/s Ethernet switches—the mea-
sured ping time between client and server is 229 µs.

SpecNFS mounts with the -o tcp option to use TCP as
the transport protocol. For comparison, we run the non-
speculative version of NFS with both UDP and TCP. Al-
though results were roughly equivalent, we always report
the best of the two results for non-speculative NFS. While
BlueFS can cache data on local disk and portable storage,
it uses only the Linux file cache in these experiments—this
provides a fair comparison with NFS, which uses only the file
cache. The client /tmp directory is a RAMFS memory-only
file system for all tests.

We ran each experiment in two configurations: one with
no latency, and the other with 15 ms of latency added be-
tween client and server (for a 30 ms round-trip time). The

No delay

0

5

10

15

Ti
m

e
(s

ec
on

ds
)

30ms delay

0

100

200

300

NFS
SpecNFS
BlueFS

This figure shows the time to run the PostMark benchmark.
Each value is the mean of 5 trials—the error bars are 90%
confidence intervals. Note that the scale of the y-axis differs
between the two graphs.

Figure 4: PostMark file system benchmark

former configuration represents the LAN environments in
which current distributed file systems perform relatively
well, and the latter configuration represents a wide-area link
over which current distributed file systems perform poorly.

8.2 PostMark
We first ran the PostMark benchmark, which was designed

to replicate the small-file workloads seen in electronic mail,
netnews, and web-based commerce [16]. We used PostMark
version 1.5, running in its default configuration that creates
500 files, performs 500 transactions consisting of file reads,
writes, creates, and deletes, and then removes all files.

The left graph in Figure 4 shows benchmark results with
no additional delay inserted between the file client and
server. The difference between the first two bars shows that
NFS is 2.5 times faster with speculation. This speedup is
a result of using speculative group commit and the abil-
ity to pipeline previously sequential file system operations.
Because PostMark is a single process that performs little
computation, this benchmark does not show the benefit of
propagating speculative state within the OS or the benefit
of overlapping communication and computation.

The right graph in Figure 4 shows results with a 30ms
delay. The adverse impact of latency on NFS is apparent
by the difference in scales between the two graphs: NFS
without speculation is 41 times slower with 30ms round-trip
time than in a LAN environment. In contrast, SpecNFS is
much less affected by network latency since it does not block
on most remote operations. Thus, it runs the PostMark
benchmark 24 times faster than NFS without speculation.

The benefits of speculative execution are even more ap-
parent for BlueFS. BlueFS runs the PostMark benchmark
53% faster than the non-speculative version of NFS with
no delay, and BlueFS is 49 times faster with a 30ms de-
lay. This performance improvement is realized even though
BlueFS provides single-copy file semantics and synchronous
I/O. Interestingly, BlueFS outperforms the speculative ver-
sion of NFS with a 30 ms delay. This is attributable to two

From Nightingale, SOSP 2005

21

Modify A
Write

Client 1 Client 2Server

Open BGetattr

Commit

Modify B
Write

Commit

Open CGetattr

Modify A

Client 1 Client 2Server

Modify Bspeculate

Open CGetattr
Open B speculate

Open BGetattr
speculate

Write+Commit

(a) Unmodified NFS (b) Speculative NFS

Figure 1: Example of speculative execution for NFS

processes speculatively. Encouraged by these observations,
and by the many prior successful applications of speculation
in processor design, we have added support for speculative
execution, which we call Speculator, to the Linux kernel.

In our work, the distributed file system controls when
speculations start, succeed, and fail. Speculator provides a
mechanism for correct execution of speculative code. It does
not allow a process that is executing speculatively to exter-
nalize output, e.g., make network transmissions or display
output to the screen, until the speculations on which that
output depends prove to be correct. If a speculative process
tries to execute a potentially unrecoverable operation, e.g.,
it calls the reboot system call, it is blocked until its specu-
lations are resolved. Speculator tracks causal dependencies
between kernel objects in order to share speculative state
among multiple processes. For instance, if a speculative pro-
cess sends a signal to its non-speculative parent, Speculator
checkpoints the parent and marks it as speculative before it
delivers the signal. If a speculation on which the child de-
pends fails, both the child and parent are restored to their
checkpoints (since the parent might not receive the signal
on the correct execution path). Speculator tracks depen-
dencies passed through fork, exit, signals, pipes, fifos, Unix
sockets, and files in local and distributed file systems. All
other forms of IPC currently block the speculative process
until the speculations on which it depends are resolved.

Since speculation is implemented entirely in the operating
system, no application modification is required. Speculative
state is never externally visible. In other words, the seman-
tics of the speculative version of a file system are identical to
the semantics of the non-speculative version; however, the
performance of the speculative version is better.

Results from PostMark and Andrew-style benchmarks
show that Speculator improves the performance of NFS by
more than a factor of 2 over local-area networks; over net-
works with 30ms of round-trip latency, speculation makes
NFS more than 14 times faster. We have also created a
version of the Blue File System [24] that uses Speculator
to provide single-copy semantics, in which the file consis-
tency seen by two processes sharing a file and running on
two different file clients is identical to the consistency that
they would see if they were running on the same client. In

addition, our version of BlueFS provides synchronous I/O
in which all file modifications are safe on the server’s disk
before an operation is observed to complete. Despite pro-
viding these strong guarantees, BlueFS is 66% faster than
non-speculative NFS over a LAN and more than 11 times
faster with a 30ms delay.

2. MOTIVATION: SPECULATION IN NFS
Figure 1 illustrates how Speculator improves distributed

file system performance. Two NFS version 3 clients collab-
orate on a shared project that consists of three files: A, B,
and C. At the start of the scenario, each client has up-to-
date copies of all files cached. Client 1 modifies A and B;
client 2 then opens C and B. Client 2 should see the modi-
fied version of B since that file was closed by client 1 before
it was opened by client 2.

When an application closes a file, the Linux 2.4.21 NFSv3
client first sends asynchronous write remote procedure calls
(RPCs) to the server to write back any data for that file
that is dirty in its file cache—these RPCs are necessary to
provide close-to-open consistency. After receiving replies for
all write RPCs, the client sends a synchronous commit RPC
to the server. The server replies only after it has committed
all modifications for that file to disk. The NFS client returns
from the close system call after receiving the commit reply.
The commit RPC provides a safety guarantee, namely that
no file modifications will be lost due to a server crash after
the file has been closed. Thus, a Linux application that
modifies a file in NFS incurs a performance penalty on close
of at least two network round-trips and one synchronous disk
access. Some other operating systems have NFS clients that
do not wait for a commit reply before returning from close—
these clients sacrifice safety, but improve performance since
they block only until replies for all outstanding write RPCs
have been received.

When an NFS client opens a file that it has previously
cached, it issues a getattr RPC to the server. The file at-
tributes returned by the server indicate whether the file has
been modified since it was cached (in which case the cached
copy is discarded and a new copy is fetched). Since the NFS
server is a single point of synchronization, the getattr RPC

From Nightingale, SOSP 2005

How?

• create_speculation

– Normal client code goes here

• commit_speculation || fail_speculation

• create_speculation:

– Create copy-on-write fork of current process,

save it away (don’t run it)

– On commit_speculation: Delete copy

– On fail: Replace original with saved copy,

returning “speculation failed” 22

Simple idea, but...

• Lots and lots of details

– What if process does something that would affect

system/user visible state?

• For any op, by default, mark as “wait until speculative ops

get resolved”

• Optimize the common ones by letting them speculate

– what if process writes while executing speculatively?

• Makes shadow copy of file (if possible), etc.

– Propagate speculative bits across fork(), writes to other

processes on pipes, etc.

– If anything too hard (sysV shm), just punt and wait for

speculation to end
23

Optimizing NFS

• Propagate speculative writes across protocol

– Make NFS server transactional -- much as in Kung81

– NFS server keeps shadow copy and can invalidate/write it

on commit

• In common case, little sharing in {NFS, AFS, etc.}

• Prior approaches (e.g., Coda) use optimism to allow

operations, but punt conflict resolution to {user,

app}

– Designed for longer-term speculation (hours)

– Nice to make it transparent

24

