On Optimistic Methods for
Concurrency Control.

Kung81: H.T. Kung, John Robinson.
ACM Transactions on Database Systems
(TODS), vol 6, no 2, June 1981.

Birth of Optimistic Methods

Lovely, complex, very concurrent transactions
Spawned much subsequent systems theory

Basic tradeoff between go slow & safe vs go fast
and clean up after yourself

Driven by database sensibility:

— Single threaded access to huge database means
blocking all work waiting for disk pages to load

— Instead, lots of operations in database, some waiting for
disks while others work, but protect DB integrity
(which is application specific, assumed correct for each
transaction running serially)

Client code DB/FS/etc.
LOCK
lookup — read several pages

i / read several pages
{Cllent l(m/ 7)
lookup /)

| write pages

{logic} % - Time to load
/ pages from
write disk
UNLOCK
- Client - Network
processing latency
time

Basic performance arg

Locking slows down common path
— Overhead of locking, reduced concurrency because
locks too big, and, the big problem, held too long
But given millions of different data records,
probability of conflict for 2 changes is tiny
— Cheaper to “hope for the best” but

— check for conflict near the end of your work and abort/
clean up if real conflict occurred

Assumes disk & memory read/write atomic

— Real world CPUs (Eraser & Alpha) may relax this
In virtual time, database is (passive) process

— reads & writes are messages from and to it

Basic Implementation

Organize transactions to work on private copies
At end of transaction, “validate” correctness of
private copy changes

If valid, then make copies permanent

Divides each transaction into:

— DB read phase (making copies), validation phase &
write (copyback) phase

Doesn’t lock DB during client logic computation
Groups reads & writes of same blocks close in time

“Pre-fetches” blocks for validation/write phase

Client code DB/FS/etc.

BEGIN

lookup /

{client logic}
| write shadow copy of

lookup 7
{logic/ | pages \

read several pages

read several pages

WAL

Tentative

state

END
\ Validate — |
Write /

v
Real state
or rollback

Validation: Serializability

Separately test all transactions consistent

— Running alone on database, transaction assumed correct

Make transaction codes independent of each other

— Happens-before only property of (data) values in db
All serial orderings of “concurrent” transactions
are valid
Allow concurrent running if transformations are
same as transforms possible from a serial order

— Serializable

Basic approach: transaction IDs

 Serializability means a serial ordering exists

* Select ID for each transaction a priori

— Force DB updates to be equivalent to serial execution in
numeric order of ID values

— In validation phase, abort & retry transactions that would
not meet this condition
* Transforms lock queueing slowdowns for the risk of
not making progress

— ID selected at “begin” less concurrent if some read
phases run much longer

— Delay ID choice until validation or later to reduce aborts

Conditions for validity

* For i<j, Transaction Ti must “precede” Tj

* 1) Ti ends copyback before Tj reads start, or
— Actually serial ordering
e 2) Tj reads nothing Ti writes and Ti ends copyback
before Tj starts copyback, or
— Opverlap of Tj reading with Ti copyback is harmless &
Tj copyback is serialized after Ti copyback
* 3) Tjreads & writes nothing Ti writes and Ti ends
reading before Tj ends reading

— Opverlap of Ti copyback with Tj reads because Ti can’t
hurt Tj, but Tj might hurt Ti if its writes start too soon

|

* 1) Ti ends copyback before Tj reads start

r , v . W

I

T T 1
| r] vV W
I 1 1 1

* 2) Tj reads nothing Ti writes and Ti ends copyback

before Tj starts copyback, or

L r 4 v ;. W
I T T 1

L r 4, v . W

* 3) Tjreads & writes nothing Ti writes and Ti ends
reading before Tj ends reading

I T T 1
| r] vV W |
I T T 1

Simple testing of sets

* Long critical section if copyback slow

thegin = (
create set .= empty,
read set := empty,
write set := empty;
delete set :== empty;
start tn := tnc)

tend = (Lock
(finish tn := tnc;
valid := true;

for ¢ from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
if valid
then ((write phase); tnc = tnc + 1; tn := tnc));
if valid nlock
then (cleanup)
else (backup)).

More parallelism

* Test clearly preceding (no longer changing)
transactions outside critical section

tend := (
mid tn := tnc;

valid := true;
for ¢ from start tn + 1 to mid tn do
if (write set of tr ion with trar ber t intersects read set)

= false;
{finish tn := tnc;
for ¢ from mid tn + 1 to finish tn do

if (write set of tr tion with tran

then valid .= false;

if valid

then ((write phase); inc := inc + 1; tn := inc));
if valid

then (cleanup)

else (backup)).

ber t intersects read set)

Even more parallelism Space issues

* Add ordered testing of condition 3 * What if run out of space for sets?
— Abort & retry
actie = aetive) {ud of this transaciion }); * What about repeated abort & retry?
for ¢ from start tn + 1 to finish tn do
if (write set of tr ion with tr 7 ber t intersects read set) — HOld Crlthal section 1n a retry (U.gh)
then valid := false;

for i € finish active do
if (write set of transaction T; intersects read set or write set)
then valid := false;
if valid
then (

ite phase);
(tne:=tne + 1;
tn:=tne;
active ;= active—{id of this transaction));

(cleanup))

else [
{active := active—{id of transaction}):
(backup))).

Applic to B-trees Eval

* Models B-trees with lots of entries in each page * Thought experiment
(199), uniform key insertion, interior nodes

— Not fair as really a database theory paper then
cacheable and leaf pages not cacheable

* Analysis of B-tree not appropriate
* Does consider splitting a leaf, but apparently not — Really should have modeled rotations as “randomness”
rotating tree to maintain balance (not needed if is far too unlikely

inserts are uniform :-) * Very influential: “optimistic methods” is current

* Concludes for such B-trees that conflict, abort and label of anything trying first then checking if it
restart will be rare (0.07%) had a conflict and undoing it

Lock-based Concurrency Control

* Used by most databases today

Client code

* If no conflicting

— Inside any transaction, all accessed data is protected by EIZGLNY writes longer Tx
: . lookup ’
read/write locks & stored in shadow pages or undo logs better
(later lecture) until changes are commited & written (client logic)
client logic .
— All locks acquired are held until transaction is done (!) lookup & * But pOSSlbly
— So concurrent transactions sharing any page are harder for app to
serialized by page locks, that is, with respect to shared {logic} rollback
pages, execute one at a time Wh b
. ° -
— Beware deadlocks -- if locks cannot be hierarchicalized, write ata .Out non
then detect lock cycles and break with abort & rollback END transactional
apps”? 18
Speculative Execution .
1 E
e Example: Unmodified apps using an NFS 15]
Server] === NFS
200 — =3 SpecNFS
— Clients cache data, but] === BlueFS

— For consistency, NFS ops are all sync

 Client-server latency greatly slows things
down

Time (seconds)

No delay

100]

From Nightingale, SOSP 2005

20
30ms delay

Client 1 Server Client 2 Client 1 Server Client 2

Modify A

_Write+Commit,
speculate< [Modify Bif"

E =

Getattr _—[Open C]
- “[OpenB] |speculate

Modify Br4—
C

— >

s Getatt- — [CpenB]
= Getattr |OpenC — speculate
-

-
M= Getattr |OpenB

(a) Unmodified NFS (b) Speculative NFS

From Nightingale, SOSP 2005
21

How?

e create_speculation
— Normal client code goes here
e commit_speculation Il fail_speculation

e create_speculation:

— Create copy-on-write fork of current process,
save it away (don’t run it)

— On commit_speculation: Delete copy

— On fail: Replace original with saved copy,
returning “speculation failed” 2

Simple idea, but...

¢ [ots and lots of details

— What if process does something that would affect
system/user visible state?

 For any op, by default, mark as “wait until speculative ops
get resolved”

* Optimize the common ones by letting them speculate
— what if process writes while executing speculatively?
» Makes shadow copy of file (if possible), etc.

— Propagate speculative bits across fork(), writes to other
processes on pipes, etc.

— If anything too hard (sysV shm), just punt and wait for

speculation to end
23

Optimizing NFS

* Propagate speculative writes across protocol
— Make NFS server transactional -- much as in Kung81

— NFS server keeps shadow copy and can invalidate/write it
on commit

* In common case, little sharing in {NFS, AFS, etc.}
* Prior approaches (e.g., Coda) use optimism to allow

operations, but punt conflict resolution to {user,
app}

— Designed for longer-term speculation (hours)
— Nice to make it transparent

24

