
The Design and Implementation of

a Log-Structured File System.

M. Rosenblum, J. Ousterhout.

ACM Trans. Computer Systems,

vol. 10, no. 1, Feb 1992, pp. 26-52.

Dealing with Disks 2

• Today’s troubles:

– Disk seeks are evil

• In the paper: 1.3MB/sec disk, 17.5ms seek

• Today: 30x faster xfer, 4x better seek. Ouch!

– Synchronous writes in conventional filesystems

are evil

• Application blocks

• Most sync writes involve ... seeks! Possibly many.

2

Common Workload Patterns

• Back to our old 90/10 rules of thumb:

– Ganger: 79% of files < 8KB

– Baker: 80% accesses to files < 10KB

– (But most bytes on disk in large files!)

• e.g., 21 files on my laptop occupy 23G / 93G =1/4!

• Of course, single largest file is 6G of 15-712 lecture

video. :) == 6.5% of hard drive for one file...

– Suggests many ways to optimize

3

Write vs Read Oriented Layout

• Importance of disk write BW (think about RAID - small
writes are slower...)

– Successful read caching and prefetching (false - paper mis-predicted)

• Unfortunately, larger DRAM offset by larger files, bigger disks & their
metadata structures, larger app VM working sets

• But write order good for read unless seq reads after random write

– Synchronous writing for recovery is bad (true)

• Part answers: battery backup writeback caches for power fail, and
recoverable main memory structures simple crashes

• Use of transaction logging to avoid FSCK

– Recovery of inflight operations between checkpoints

– whole-disk fsck gets increasingly bad as MAD grows > Tx rate

• LFS led into new era of disk layout (hybrid log+mapped)

– NetApp WAFL industry leader in distr’d file systems

Data & Metadata Layout
• Updated structures written to end of log

– Buffer as long as possible to minimize seeks

– Compare to FFS seek per 2 file inode writes, 1 file data write, 1

directory inode write, 1 directory data write (& free bitmap writes)

Potential Performance

• Reducing

seeks goes

long way

to make

file system

faster

– No cleaning

done in

benchmark

Cleaning the log

• But space freed by file deletes is needed

Cleaning con’t
• Cleaning needs block# to file/offset map

– FFS bitmap can’t, so add segment summary

– Liveness (easy in bitmap) done by testing block ->
inode -> block pointer cycle

• Divide into segments & thread log thru segments

• Order: clean most free space first (greedy)?

– But old segments (unlikely to see deletes) don’t give up
their space for long time; recently written segments,
seeing lots of deletes, will see more soon

– Cost-Benefit metric increases with time since last write
and increases with more free space

• Old segments cleaned at 15% free, new segments at 75%, if
5% of files get 90% of writes

• Also, cleaning many segments, reorder to pack old files in
different segments from new files

Greedy-Cost or Cost-Benefit Reconsidering Cleaning
• LFS uses continuous/threshold-drive cleaning to

defragment

– Emphasizes not cleaning “hot segments” too soon as they
will see lots more deletes soon (wasting copies)

• Seltzer95 (Usenix95) disagrees

– Fixed some old non-optimal FFS actions (update 1984
technology to 1995 -- LFS compared to weak target)

• Clustered writes - group inodes + data, fewer seeks

– Finds cleaning costs often outweigh benefits; background
cleaning may defray cost to user workload

– Very workload dependent -- benefits of LFS best in small
file create loads

• NetApp WAFL doesn’t clean automatically

– Admin tool for defrag as needed (if needed)

Recovery after Crash

• To avoid fsck (“find” & test all metadata)

• Checkpoint “top of FS” to fixed location

– Contains pointer to last written segment, stats

– Double buffer checkpoint, use latest timestamp
• Every 30sec (better: min(30sec, X MB written))

• Roll-forward log-segments after checkpoint
– Embed write-ahead log for directory changes (create,

link, unlink, rename) so interrupted log writing can
correct directory/inode pointers/refcounts (except
creates without inode making it to disk)

Data vs Metadata

• WAFL trick for floating inodes: one fixed inode points at
file containing table of rest of inodes

– Replaces inode map with this file’s inode + arithmetic

FFS

Y

Y, table

Y

Y, bitmap

N

Y

N

N

Eval

• Modern “build & measure + simulate”

– Excellent problem formulation & metrics

– Big dependence on workload, but sample of

workloads explored not wide

– Key ideas about cleaning but benchmarks too

often don’t control/test cleaning

• Key idea: merge writebacks to reduce seeks

– Cleaner theory was what they thought was key,

but in fact it remains untrusted by many

Benchmarks Today

• Some people scale up MAB

• Postmark (mail server sim - lots of small

writes)

• Netnews (tons of creates/deletes, files)

• Large file writes (easy to test)

• “Modern” MAB - untar/compile your

favorite software package (emacs, ssh, ...)

14

The Modern World

• WAFL - “Write Anywhere Filesystem”

– Write-ahead logging of NFS requests

– Snapshots for consistency (batch up lots of

requests, write out en masse periodically,

snapshot)

– Write data + inodes to any free block the disk

head is near; update master pointers later

– NVRAM to avoid need for synchronous writes

($$, but appliances are already $$$)
15

Modern, 2

• Journaling filesystems

– Write (async or sync) metadata updates to a log

in a big stream for consistency

– Update “real” filesystem contents when

appropriate

– Duplicates some metadata writes

• But lets you defer/batch seek-intensive ops, so

worth it

– Used in a lot of modern filesystems!
16

Modern 3: Soft Updates

• Instead of logging...

• ... Allow writes partially out-of-order, and

defer many of them

– Why defer? create/write/remove - ends up with

no disk writes at all...

• How? Track dependencies between dir/

inode/data writes (graph of ops)

– Requires some complex rollback machinery

– But works pretty well when you get it right17

