
Eraser:  Dynamic Data 
Race Detection

15-712

Topics overview

• Concurrency and race detection

• Framework:  dynamic, static

• Sound vs. unsound

• Tools, generally:

• Binary rewriting (ATOM, Etch, ...) and analysis (BAP, etc) - 
see also use in JITs and VMMs.

• Techniques used for state space reduction (c.f. model 
checking)

• What are the eval criteria they used?  How did they 
argue?

Debugging Concurrency is Hard

• Few tools beyond per-proc gdb

• Debugging multi-process systems is harder than single 
process, even without...

• Threads come with unique problems

• Deadlock, data races, non-determinism

• High performance typically implies lots of locks

• For max parallelism, vs. one “big” lock

• Shows up in modern kernel evolution as SMP grows

• As #cores grow, parallelism will have to extend further 
and further into apps/libs to keep getting faster

Eraser:  Lint for multi-threading

• Multiple threads in single address space

• Shared memory, one CPU

• Assumes:

• pthreads lock() is sync, not monitors

• libc memory allocation

• Doesn’t work out causality

• Costly bookkeeping;  requires observing right interleaving

• Instead looks for idiom/style

• Must hold lock to access shared variable

• Data race:  simultaneous access w/1+ writer

• Limitation:  must be consistent locking, not “either of two” locks

• e.g., DB pages or multi-page locks



Binary Rewriting

• “Metaprogramming” tool for executables

• Read & partially understand binary

• Could also be done in compiler...

• Write new extended code after adding function

• (Harder on x86, but it’s been done - variable length binary instruction set vs. 
more RISC-like systems)

• DEC ATOM tool for Alpha

• Insert counters -- “super gprof”

• Idea:  Add memory restriction for safer code (dynamic bounds checking)

• Add lock analysis to “lint” the sync code.

• compare to:  modifying the source, interpreting the instruction 
stream, trapping system calls in the kernel

See Savage Slides

• http://www.cs.ucsd.edu/~savage/papers/
Sosp97Slides.pdf

• Next bunch of slides taken in very large part, mostly 
verbatim, from the SOSP talk.

• Some annotations.  Blame dga, not SOSP talk, for bugs

How happens-before misses races

y := y + 1;

lock(mu);

v := v + 1;

unlock(mu);

lock(mu);

v := v + 1;

unlock(mu);

y := y + 1;

Thread 1 Thread 2

Not detected as a race by happens-before

Lockset algorithm

• Dynamic analysis

• Require programmer to adhere to convention

• Locking Discipline:

• Consistently hold lock when using resource

• Automatically infers which lock(s) protect resource

• Finds more bugs than “happens-before”

• But can generate many false positives!



Checking simple discipline

C(v): locks that might protect variable v

Initialize C(v) := set of all locks

On each access to v by thread t,

  C(v) := C(v) ! locks_held(t)

If C(v) is empty, then issue a warning

Refining the candidate set

lock(mu1);

v := v + 1;

unlock(mu1);

...

lock(mu2);

v := v + 1; 

unlock(mu2);

C(v) = {mu1, mu2}

C(v) = {mu1}

C(v) = {}

Program New value of C(v)

False Positives

• FPs are the defining problem with this type of 
approach

• We’ll see later some other examples...

• Really hurt usability.  1000 FPs + 1 bug isn’t useful.

• Much of the rest of paper is about avoiding FPs

• Ideally without reducing true positives (does it?)

Limitations of simple algorithm

! Initialization

" Don’t need locks until data is shared

! Read-shared data

" Don’t need locks if all accesses are reads

! Reader/writer locks

" Read locks can’t protect writes



Modified algorithm

! Assume first thread is initializer

" Only update C(v) after two threads touch v

! Only report races after data is known to

be write-shared

! Track read and write locks separately

" Remove read locks from C(v) on a write

Mapping variables to sets of locks

Program

memory

Shadow 

memory

v

2

Lockset 

index table

mu1

mu4

Lock vector

&v +

offset

Performance

! Fast enough to be useful

" 10-30x user-time slowdown

! Lots of opportunities for optimization

" Half of overhead due to ATOM

Experiences

! Tested real programs

" AltaVista web server and index library

" Vesta cache server

" Petal distributed disk server

" Undergrad coursework from intro OS class

! Most programs found to contain races

! False alarms easy to manage



Program characterization

Program
Lines of

code Threads Locks Lock sets
AltaVista

   Ni2 20,000 10 900 3600
   mhttpd   5,000 10 100   250

Vesta 30,000 10   26     70

Petal 25,000 64

• Re-introducing bugs is a useful and now common 
technique

Case study: AltaVista

! Double blind experiment

" Two old races reintroduced

" Previously undetected for several months

" Found and fixed in 30 minutes

! Several additional (minor) races found

! Several benign races

" Tricky optimizations

• Advanced programmers make automatic inference 
hard...

• Subtle optimization, hard to reason about its correctness

Benign race example

if (p->fp == 0) {

lock(p->lock);

if (p->fp == 0) {

p->fp = open_file();

}

unlock(p->lock);

}

Serious race (subtle)

if (p->fp == 0) {

lock(p->lock);

if (p->fp == 0) {

p->fp = open_file();

}

unlock(p->lock);

}

pos = p->fp->pos;



Case study: Undergraduate OS

! Four simple synchronization problems

" e.g. producer consumer

! ~180 homeworks tested

! Found data races in more than 10%

Overall races detected

Program Serious
races

Minor
races

Benign
races

AltaVista ! !
Vesta ! !
Petal !
Undergrad
assignments

!

Kinds of false alarms

! Private memory allocators

" e.g. free list

" Need to reinitialize C(v)

! Private lock implementations

" e.g. reader/writer locks

" Need to know when locks are held

! Benign races

Removing false alarms

! Simple program annotations

! Number of annotations needed to

remove all false alarms:

" AltaVista (19)

" Vesta (10)

" Petal (4)



end SOSP talk slides Eval
• Modern systems eval

• Real impl (distributable;  recently rediscovered value for 
research code)

• Injected faults by sticking old bugs back into code

• This technique used in many subsequent evals

• cvs/svn/git/etc. history

• Applied to large, real applications and multiple mostly 
independent tests (students)

• Would have been nice to see more quantitative 
comparison between systems, but that’s another 
paper... :)

Eval 2

• Not perfect tool:

• 10x slowdown

• Processor specific for dead processor

• No guarantee to catch all races

• In particular:  Engler papers suggest many bugs lurk in 
infrequently hit code -- error handling, etc.

• Dynamic detection has hard time catching those

• Just like testing does.

• But useful for an otherwise hard problem

Design Space
• Static vs. Dynamic analysis

• Dynamic:  Depends on execution order

• Static:  Intractable (but can work well, today)

• Sound vs. Unsound

• Note tension between pragmatists and correct-ists

• Existing languages (C...) vs. “Better” languages
• Actual code?  Annotations?  Model?

• Type systems;  correct by construction?

• Code generation:  prove correct, then generate code.

• Eval questions:
• False positives?  False negatives?  Coverage?

• Running time?

• Run in tests vs. in production system?



Follow-on
• Want more?

• “Bugs as Deviant Behavior:  A General Approach to Inferring 
Errors in Systems Code”

• SOSP 2001.  Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, 
and Benjamin Chelf

• “The Daikon system for dynamic detection of likely invariants”

• Science of Computer Programming 2007.  Michael D. Ernst, Jeff H. 
Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.  
Tschantz, Chen Xiao.

• Both examine more general invariants

• Daikon examines more invariants;

• Engler et al. is static

• Both use machine-learning/statistical techniques to infer invariants


