Eraser: Dynamic Data
Race Detection

15-712

Topics overview

® Concurrency and race detection
® Framework: dynamic, static
® Sound vs. unsound

® Tools, generally:

® Binary rewriting (ATOM, Etch, ...) and analysis (BAP, etc) -
see also use in JITs and VMMs.

® Techniques used for state space reduction (c.f. model
checking)

® What are the eval criteria they used! How did they
argue!?

Debugging Concurrency is Hard

® Few tools beyond per-proc gdb

® Debugging multi-process systems is harder than single
process, even without...

® Threads come with unique problems
® Deadlock, data races, non-determinism

® High performance typically implies lots of locks
® For max parallelism, vs. one “big” lock
® Shows up in modern kernel evolution as SMP grows

® As Hcores grow, parallelism will have to extend further
and further into apps/libs to keep getting faster

Eraser: Lint for multi-threading

Multiple threads in single address space

Shared memory, one CPU

® Assumes:
® pthreads lock() is sync, not monitors
® libc memory allocation

® Doesn’t work out causality

® Costly bookkeeping; requires observing right interleaving

Instead looks for idiom/style
® Must hold lock to access shared variable
® Data race: simultaneous access w/ |+ writer

® Limitation: must be consistent locking, not “either of two” locks

® e.g, DB pages or multi-page locks

Binary Rewriting

“Metaprogramming” tool for executables
® Read & partially understand binary
. Could also be done in compiler...

® Write new extended code after adding function

e (Harder on x86, but it'’s been done - variable length binary instruction set vs.

more RISC-like systems)
DEC ATOM tool for Alpha
® Insert counters -- “super gprof”
® Idea: Add memory restriction for safer code (dynamic bounds checking)
® Add lock analysis to “lint” the sync code.

compare to: modifying the source, interpreting the instruction
stream, trapping system calls in the kernel

See Savage Slides

® http://www.cs.ucsd.edu/~savage/papers/
Sosp97Slides.pdf

® Next bunch of slides taken in very large part, mostly
verbatim, from the SOSP talk.

® Some annotations. Blame dga, not SOSP talk, for bugs

How happens-before misses races

Thread 1 Thread 2

yi=y+1;
lock (mu) ;

v :=v + 1;
unlock (mu) ;

lock (mu) ;

v :=v + 1;
unlock (mu) ;
Yy =y +1;

Not detected as a race by happens-before

Lockset algorithm

Dynamic analysis

Require programmer to adhere to convention
® |ocking Discipline:
e Consistently hold lock when using resource

® Automatically infers which lock(s) protect resource

Finds more bugs than “happens-before”

But can generate many false positives!

Checking simple discipline

C(v): locks that might protect variable v
Initialize C(v) := set of all locks

On each access to v by thread t,
C(v) := C(v) N locks_held(t)

If C(v) is empty, then issue a warning

Refining the candidate set

Program

lock (mul);
v :=v + 1;
unlock (mul);

lock (mu2);
v :i=v + 1;
unlock (mu2);

New value of C(v)
C(v) ={mu1, mu2}

C(v) ={mut}

False Positives

® FPs are the defining problem with this type of
approach

® We'll see later some other examples...
® Really hurt usability. 1000 FPs + | bug isn’t useful.
® Much of the rest of paper is about avoiding FPs

® |deally without reducing true positives (does it?)

Limitations of simple algorithm

o Initialization

Don’t need locks until data is shared
e Read-shared data

Don’t need locks if all accesses are reads
e Reader/writer locks

Read locks can’t protect writes

Modified algorithm

e Assume first thread is initializer
Only update C(v) after two threads touch v
e Only report races after data is known to
be write-shared
e Track read and write locks separately
Remove read locks from C(v) on a write

Mapping variables to sets of locks

v
Program
memory | &v +
offset
2 >
Shadow Lockset [mu
memory index table Lock vector

Performance

e Fast enough to be useful
10-30x user-time slowdown

@ Lots of opportunities for optimization
Half of overhead due to ATOM

Experiences

e Tested real programs

AltaVista web server and index library

Vesta cache server

Petal distributed disk server

Undergrad coursework from intro OS class
e Most programs found to contain races
e False alarms easy to manage

Program characterization

Lines of
Program | code Threads Locks Lock sets
AltaVista

Ni2 20,000 10 900 3600
mhttpd | 5,000 10 100 250

Vesta 30,000 10 26 70
Petal 25,000 64

Case study: AltaVista

e Double blind experiment
Two old races reintroduced
Previously undetected for several months
Found and fixed in 30 minutes
e Several additional (minor) races found
e Several benign races
Tricky optimizations

® Re-introducing bugs is a useful and now common
technique

Benign race example

if (p->fp == 0) {
lock (p->lock);
if (p->fp == 0) {
p->fp = open_file();

}
unlock (p->lock);

® Advanced programmers make automatic inference
hard...

® Subtle optimization, hard to reason about its correctness

Serious race (subtle)

if (p->fp == 0) {
lock (p->lock) ;
if (p->fp == 0) {
p->fp = open_file();
}
unlock (p->lock);

}
pos = p->fp->pos;

Case study: Undergraduate OS

@ Four simple synchronization problems
e.g. producer consumer

e ~180 homeworks tested

e Found data races in more than 10%

Overall races detected

Program | Serious Minor Benign
races races races

AltaVista v v

Vesta v v

Petal v

Undergrad v

assignments

Kinds of false alarms

e Private memory allocators
e.g. free list
Need to reinitialize C(v)
e Private lock implementations
e.g. reader/writer locks
Need to know when locks are held

@ Benign races

Removing false alarms

e Simple program annotations
@ Number of annotations needed to
remove all false alarms:
AltaVista (19)

Vesta (10)
Petal (4)

end SOSP talk slides

Eval

® Modern systems eval
® Real impl (distributable; recently rediscovered value for
research code)
® Injected faults by sticking old bugs back into code
® This technique used in many subsequent evals
® cvs/svn/git/etc. history

® Applied to large, real applications and multiple mostly
independent tests (students)

® Would have been nice to see more quantitative
comparison between systems, but that’s another
paper...:)

Eval 2

® Not perfect tool:
® |0x slowdown
® Processor specific for dead processor

® No guarantee to catch all races

® |n particular: Engler papers suggest many bugs lurk in
infrequently hit code -- error handling, etc.

® Dynamic detection has hard time catching those
® Just like testing does.

® But useful for an otherwise hard problem

Design Space

Static vs. Dynamic analysis

® Dynamic: Depends on execution order

e Static: Intractable (but can work well, today)
Sound vs. Unsound

® Note tension between pragmatists and correct-ists

Existing languages (C...) vs.“Better” languages

® Actual code! Annotations! Model?

® Type systems; correct by construction?

® Code generation: prove correct, then generate code.
Eval questions:

® False positives! False negatives!? Coverage!?

® Running time?

® Run in tests vs. in production system?

Follow-on

® Want more!
® “Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code”

® SOSP 2001. Dawson Engler, David Yu Chen, Seth Hallem,Andy Chou,
and Benjamin Chelf

® “The Daikon system for dynamic detection of likely invariants”

® Science of Computer Programming 2007. Michael D. Ernst, Jeff H.
Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, Chen Xiao.

® Both examine more general invariants
® Daikon examines more invariants;
® Engler et al. is static

® Both use machine-learning/statistical techniques to infer invariants

