
Threads: A Case Study
15-712 #3

To understand systems, it is not enough to
describe how things should be;

one also needs to know how they are.

- Hauser, Jacobi, Theimer, Welsh, and Weiser
“Using Threads in Interactive Systems: A Case Study”

Rare Observation & Experience Paper

• 10-20 years of advanced hands-on coding

• 2.5Mloc, 10K files, 1K monitors, 300 cond. vars

• Asserted to be largest/longest lived thread-based
interactive system

• Developed for Altos & Dorados (last time)

• Data from Sparcstations using SunOS + Portable
Common Runtime

• Threading while the rest of world was Process-based

• MIMD shared memory, uniprocessor

• i.e. threads were for structure, not parallel procs

• Cedar - original research system (less efficient?)

• GVX - product split from Cedar in ‘83

PARC & Mesa again

• Insert wow-ness about PARC again

• Huge, successful, innovative systems research lab

• Mesa:

• Native monitors (think “java synchronized methods”)

• Preemptive, strict priorities. 50ms scheduling quantum.

• Weaker than Hoare (exactly one wakes up, immediately takes
over monitor)

• But notify gives strong perf - exactly one wakens

Design space

• Multi-tasking models: Who runs when?

• Preemptive

• Cooperative

• Implementation: where do threads exist?

• Kernel

• Userlevel

• Tradeoffs: Single-proc performance, efficiency,
thread switch time, really non-blocking-ness,
multiprocessor capable, processor details (affinity,
IPIs, etc.)

Method

• Instrumented runtime to collect data

• Good: Very powerful; lots of data from real code

• Potential bad: Affects system behavior?

• Recorded

• #threads

• lifetime

• run-length distribution

• lock/wait rates

• Workload:

• “representative” benchmarks: compile, format, view

Thread Types

• Eternal, Worker, Transient

• Eternal:

• “Managers” wait on external events & trigger workers

• Execution mostly short: < 5ms; but ~45ms dominate
cycle use

• Goal: Minimize latency to event processing

• e.g., to provide good iterative perf

• Workers: forked to handle job or wait on job
notification

• Cedar: 35-40 (-120 in real use); GVX: 22

Transient threads

• To handle specific task

• (Note: Some workers may be eternal; some may be
transient. Not entirely orthogonal definition.)

• Transients ran briefly

• How does this compare?

• My mac has 223 threads running w/Keynote/etc, 93
processes. Apps have 4-20 threads. Daemons 20+

• Their sys: 41 in benchmarks; 2-3x this in “real use”

• Not too far off...

Synchronization

• Monitors: Protect specific bit of code (or specific
data structure)

• Kind of like “java synchronized”

• Heavy use as mutexes on shared data

• < 0.4% contention. (Remember: single proc!)

• Waits mostly timeout (sleepers, polling, blinking, $ mgmt)

• Cond vars: wait for specific condition (more abstract
notion - programmer can define)

• Not surprisingly: more monitors than CVs

• Example monitor: protect data structure in shared lib

• Example CV: checking for items in a work queue

• Cedar uses 5-10x synchronization

Impl notes on synch

• Note that underlying operations must be atomic

• Depends on single vs. multi-proc; memory ordering
semantics; cache sharing semantics; etc.

• Processors provide primitives such as atomic test/set to
use to implement

Scheduling

• Nice tidbit:

• “Most execution intervals are short; longer execution
intervals account for most of the total execution time in
our systems”

• This trend shows up often (most web objects are small;
large objects account for most data volume)

• Helps for scheduling -- still a modern area

• e.g., old BSD priority: 1 / recent CPU use

• BSD ULE: “interactivity score” (time run vs. time
voluntarily slept)

• Can often provide both good interactive performance and
efficient resource use. Schedule interactive stuff first.

Thread use

• Birrell91 (intro to programming w/threads)

• Exploit concurrency w/multiple CPUs

• Processor sharing to make progress on multiple tasks

• Network clients, multiple humans, etc.

• Defer low-priority work while busy

• Hauser93: more patterns

• Defer work, pumps, slac procs, sleepers & 1-shots,
deadlock avoidance, task rejuv, serializers, concurrency
exploiters, encapsulated forks

• Tradeoff: forking takes cycles & mem => programming
ease and parallelism

Defer work

• Get output back to user sooner (most important)

• Email send, document print, window update, etc.

• Enduring importance: ensure user interactivity!

• Most common use of forking in Cedar

• Delay until less busy time

• Priority of forked thread determines delay

• Really, same thing: do important work first...

Pipelines, pumps, & slack

• Pipelines of multiple threads

• Birrell91 intended pipelines for multiple CPUs

• Amusingly, that era is just starting now

• Software will take a while to catch up

• (But look at # threads in CPU-heavy Apple programs...)

• Hauser93 saw programmer convenience

• “Pumps” as components of a pipeline

• e.g., input filters

• analog: cat foo | grep -v bar | gzip > foo.txt.gz

•

Slack procs: batching

• Coalesce work

• Deliberately add latency

• Batch for greater efficiency

• Complex: Bound added latency w/efficiency...

• Excess switches to higher-priority slack

• YieldButNotToMe

• Batching effect limited/forced by length of quanta

• Could easily be too much or too little

Sleepers & Oneshots
• Sleepers “time” system behavior

• Blink cursor in M ms, test input in T secs

• Service work batched by a slack proc (polling)

• Garbage collection, file state change callbacks, etc.

• Sleepers that exit: one-shots

• Test that a condition persists long enough to be real (double
click example)

• Errors: programming by “time”

• Timeout values often wrong (how long to wait)

• Machine quanta forces min. resolution

• Mistakes create bad performance & response time (hard to
debug...)

Deadlock Avoiders

• Best example: A lock hierarchy

• Must hold locks A, B, and C to do operation

• Grab locks A & B. Do some work. Then want C to do
the rest.

• Complex to keep all in mind and ensure no deadlocks

• Must know all held locks at some call depth, release exactly
the right set

• This is a programming nightmare; source of many bugs

• Simplify w/deadlock avoider:

• Fork new thread that directly goes for A, B, and C

• Unroll main proc all the way (release all locks)

Task Rejuvenation

• “Crash and Reboot” error handling

• Today: “microreboot”; like a database abort and retry

• May be a crash response, or could even do it preemptively
as a “system cleaning” technique. :)

• Ask for fresh start, exit confused code

• But this raises serious design/religious issue...

Failure masking vs. fixing

• Robustness techniques can mask bugs (or make
possible to blithely ignore)

• These become performance problems

• And perhaps lurking correctness problems -- there’s buggy
code running!

• What’s more important?

• Pushing the idea hard: failure-oblivious code

• Access invalid memory? Feed program junk data

• ... it often keeps on running.

• ... it often keeps on running correctly. Freakish, no?

• Correctness, bug identification, or robustness? No clear
answer - depends a lot on system.

• Consider goals of a busy web server

Serializeers & Encap. forks

• Serializers

• Single thread processing events from queue; queue filled
by multiple threads.

• This abstraction can really help simplify system

• Allows the components to safely operate asynchronously

• Stronger modularity between components

• Encapsulated forks

• Library code that can be run sync or async

• e.g., callbacks have code not understood by routine calling
them, so explicitly indicate sync/async

• Protect the server’s thread of control

What use threads?

• Most common: defer work

• Sleepers (incl. queue watchers, timeouts, etc)

• General pumps

• Deadlock avoidance in Cedar

Priorities

• Hard to program!

• Priority inversion is common

• High prio thread waits on resource X

• Low prio thread holds lock on resource X, but

• Low prio thread can’t run b/c of med prio thread CPU hog

• mars pathfinder...

• Suggest: trickling CPU to threads (breaking strict prio)

• e.g. proportional fair share by prio

• Again, a system robustness trade-off

• Masking incorrect behavior!

• Results in delays until locker thread eventually gets some CPU

Running out of Resources

• Mostly unrelated to threads. :)

• But very hard to deal with!

• Memory failures are a pain.

• Even in modern systems!

• Many, many routines implicitly allocate memory

• Forces programmers to really plan mem usage

Threads & Closures

• Closure: data structure holding all state needed to
complete some work

• i.e. buffer control block & I/O completion

• Interrupt forks a “soft” interrupt handler w/pointer to
buffer. Worker finishes I/O handling & wakes reader

• Worker gets prior state from buffer header.

• Threads use stack state

• 100KB in this paper. (Large - 32MB-64MB in $$ sys!)

• Closures use “only enough” memory; more flexible

• Threads visible to OS and debugger, often conceptually
easier (debugging a closure-based system can hurt.)

• Ex: 1000s of concurrent conns in web server

About this paper
• The good:

• Loads of significant data; rare experience/introspection

• Not enough empirical work in CS. Hard to evaluate
abstractions, particularly programming abstractions.

• And papers w/this much real data are very rare

• Hmm:

• Not much comparison. Are these abstractions useful?
Correct? The best? Why? Inter-system (Cedar/VVX)
comparison?

• Reader has to interpret most of the data.

• This wasn’t a “see, my idea wins” paper

• What’s good/bad/surprising in the #s?

