| 5-712 Introduction

David Andersen

Today’s Topics

Waitlist status

Course requirements
Background you should have
Topics that will be covered

Things we’re leaving out!

Overview: what, why, how it fits together

Waitlist

As of today: registered, on waitlist
Course limit: 24 (project face-time limit!)

Admittance priority: CSD Ph.D., ECE Ph.D., CSD
5th year masters

® Others should check with dga
® Attendance during first few classes counts.:)

If you're not going to take class, please drop so we
know the real # of students

Course Schedule

e Officially: MWF 10:30 - 12:50

® Real: average two days per week
® More MWEF at the start of the semester
® More M towards the end (biasing for projects)
® But will vary!

® Please pay attention to the online schedule

Course Requirements

® This is a paper-reading course
® Attendance & Participation
® Short summaries of papers (1/4 - 1/2 pg)
® 3 most important things in paper
® Describe biggest weakness
® Describe concl. about how to build systems

® With two “midterm” exams

® Questions about “important parts” of papers, e.g.“How do
the consistency semantics of system X differ from systemY?
Why?”

® Questions about important concepts, e.g., “Briefly explain a
scenario in which you would want to use optimistic
concurrency”

Project

40% of course grade

Groups of 3

Goal: Real, original systems research

® |deal goal: publishable with some work after semester

Milestones: Proposal, background research update, mid-semester status
report, final presentation, final paper

Several one-on-one status meetings during semester (times TBA)
Get started early! Find groups early! Talk to us about ideas!

See list of prior years projects for additional ideas

® Our ideas list will be updated over next week or two

® Proposals due early October

Background

® Assume familiarity with 15-410/ 15-441 material

® OS organization, threads, paging, basics of
concurrency, basic TCP/IP, packets, Ethernet, etc.

® Question: Do people want an OS/networks review
session? What's the general background? What areas
are people in now? (Why are you taking the class? :)

® Have you taken |5-744 or other grad-level systems
course?

® (Only happens if we get a TA)

Topics

(Not a complete set of everything important! Far
more than one semester.)

Concurrency, threads, parallelism

® Becoming critical again with multi-core, massively parallel
storage & processing systems, google/MSN/etc.

Storage, local and distributed

Briefly: OS architecture and extensibility
Transactions and Databases

Fault Tolerance

Security

Not Enough Time for...

Each of these could be/is a class on its own:
Lots of networking detail (take 15-744.:)

Traditional high-performance computing (HPC)
(“supercomputer center stuff”)

® But we'll hit on the more systems-y side of things
Compiler and languages meet systems

® e.g, much on language-based safety, etc. (except SPIN)
Formal methods meet systems

® \Verification starting to become practical (e.g., Engler)

Much deep, formal theory (see Nancy Lynch book)

Systems + architecture (tons of interesting stuff!)

Why are Systems Fun!?

® Basic computer system:
® Processing, memory, storage, network (picture)

® Could build a basic, functioning prototype of those in a
few undergrad classes

® Now, make it real:

® High-performance, Scalable, Reliable, Useable, Extendable,
Secure, Easy to manage, Useful

® That’s where you start having to use your melon

® (Lampson: functionality, speed, and fault-tolerance)

Abstraction & Interface

® clients access an implementation using an interface
e Often the biggest part of good systems design.

® Conflicting goals: simple, complete, admit efficient
impl.

® ..and you have a nearly unbounded universe to draw from
Things to think about: Orthogonal, “KISS”,“DRY”,

small, consistent, atomic, stable, “don’t hide power”,
“leave it to the client”

® Common wrenches: Failure handling

Strunk & White: “Omit needless words”’; Tufte:
“Omit needless lines!” -> “Omit needless features!”

Things to ask yourself

® Why this interface? Why do {you, the authors,
someone} think the abstractions proposed in a paper
are the right ones?

® Are they easier to use!?

® More consistent! Making a better trade between system
complexity and client complexity?

® Do they admit more efficient implementations?
® Do you care and need the efficiency?

e Do the?y let you do more with less? e.g., are they more
powerful?

® Example: fork(); exec(“prog”); vs spawn(“prog”);
® (consider: execve, execvp; need spawnve, spawnvp, too?)
® what about embedded systems with no MMU for CoW?

Speed

® Do you need it!? Are you sure?
® Sometimes the answer is yes!

® But sometimes it should be secondary to other concerns
® Will you need it next year?

® Parallelism is coming back into vogue

® [t’s done this a few times before (Connection Machine,
SMP, CC-NUMA supercomputers, vector
supercomputers...)

® But parallelism is fundamental to large systems.
® We live in a parallel world; many resources exist in multiples

e Always, Amdahl’s Law; and don’t optimize idle loop

Fault Tolerance

® Where do you do fault recovery?

® End-to-end at the application

® Absolutely necessary. (Saltzer - end-to-end arguments in
system design)

® Where else? Depends on performance vs. complexity
trade-offs

® Nice example: 802.11 wireless ethernet
® [mplies:

® Expose failures; simple, atomic operations that are easier
to recover

® Understand why a system should be correct (or not)

Concurrency

® Affects reliability (correctness) and performance

® Must be able to harness parallelism for speed
® Today’s multi-core systems; tomorrow’s |128-core systems

e “DISC” style (“Data-intensive supercomputer”) systems, e.g.,
massive cluster farms

® Distributed systems like Akamai that put data closer to users
® How! Threads and other concurrency models

® And must be able to do so correctly

® Theory: Lamport clocks, locking models, transactions,
distributed algorithms (leader election, byzantine, etc.)

® Verification (Eraser, etc.)

® Large, complex systems are fundamentally
concurrent!

Storage

® Much of computing operates on data...
® Have to store it somewhere! :)
® What makes it interesting?
® Unreliable components (disks fail surprisingly often)

® “Interesting” access characteristics (high seek latency, but
fairly high bulk throughput)

® Limited sizes/speeds of individual physical device => often
necessary to use many devices together

Storage: Single Disk

e Coping with a single disk’s behavior

® Big challenge: synchronous (safe) writes: Must be able to
know when data is persistent (e.g., databases, accounting,
etc.)

Log-structured filesystem (allows more sequential writes)
Write all modifications to the end of large, sequential “log”

No other structures on disk.

Ideas from LFS found in many modern filesystems

Storage: Multi-disk

® Reliability and limited size:
e RAID (“Redundant Array of In{expensive,dependent}
Disks”)
® Techniques for crafting larger logical device from many
smaller devices
® |Increase speed, reliability, or both

e Getting even bigger:

® (Cluster filesystems.
® Common goal: scale by adding another “unit” (computer
+disk). Term: “self-*” (ganger). Self-managing, self-healing,
self-tuning, etc.
e “Total Cost of Ownership” a big focus
Crazy high performance another

Storage System Example

e NetApp FAS6280
® Multi-rack (up to 6) systems
® |,440 disk drives, 192GB of memory
® 8 onboard 10gigE ports, can go up to 40, ...
® 2,880TB of storage (this year)
® Dual-parity RAID
® Copy-on-write snapshots to ease backups

® |ots of stuff to make admin life easy (e.g., it phones home
and asks for replacement hard drives without bugging you)

® $$$$3%, consumes kilowatts of power

Storage: Distributed

® Ease of use:
® One copy of data, available anywhere, anytime, fast

® Examples: AFS

® We're not going to touch _too_ much on the wide-
area versions this semester
® High-performance, read-write, redundant, wide-area

filesystems are still a research challenge -- and
fundamentally hard.

Transactions & DBs

® Major issue: Concurrency
® DBs are most often disk-seek limited

® Can greatly increase throughput by overlapping
computation & 10

® Transactions: Usability & Correctness
® (And help with concurrency.:)

® Allow atomic sets of operations - all succeed or fail
together

® Recovery and Logging

® Keeping the DB in good state (despite being left in weird
state b/c of on-going operations during a crash)

Trans. & DBs, 2

® Worth noting: The major differences between
“entry-level” DBs and huge ones are the factors we
discussed earlier:

® Better query optimization (speed)
® Better scalability

® More ability to handle concurrency
® Clever implementations

® Rollback and replication (correctness & safety)

® etc.

Fault Tolerance

® Bringing in the theory: Guarantees of surviving
particular types of faults (correctness)
® Byzantine fault tolerance:

® Arbitrary failures, including malicious or those designed to
break system/protocol

® How can you design a system robust to byzantine failures of a
certain number of components?

® Typically involve voting/agreement protocols

® Fault containment: Preventing the effects of faults from
spreading
® Earlier focus: Hive (cell to cell multiprocessor)
® Modern systems: Nooks (device drivers to kernel)
® Future: Highly multi-core chips (back to the future...)

Security

® The need for security should be clear. If not, put an
unpatched Windows box on CMU’s network for 5
minutes...

® From the theory
® Access control; authentication mechanisms
® Protocols, cryptographic and otherwise

® To isolation mechanisms and secure foundations
® Modern habit: Throw things in tiny virtual machines

® Trusted Computing Platform: hardware crypto attestation

Philosophy

Worse is Better (kinda)

® Even Lamport notes that simp|icity, efﬁciency, o Simplicity: Still good. Both implementation & interface.
consistency, completeness conflict. e Simple interface: Easy to build to
e “The Perfect is the Enemy of the Good” -- Voltaire, o iLr:'g;Lmrgementation: Easy to build (think about both
via Jay Lepreau
Jay Lep o ® Correctness: Correct in all observable aspects
® (But make sure it’s still good.) ® In impl: sometimes it’s better to leave a known bug in than fix it
® A working system is better than a non-working one and introduce an unknown bug. Bizarre, eh! Big companies
) , make this judgement every day. And they’re often right. (Of
® A good system on time beats a perfect one that’s 5 years course, their systems are probably too complex to start with.
late and 3x over budget This happens often in windows...)
® How to balance practicality and ideals? ® Consistency: Keep things mostly consistent, particularly
“A Witty Saving P Nothing” - Voltai) in implementation. Interface? Meh.
L4 Itty dayin roves Nothing.” -- Voltaire again
(¥ >aying 8 gain) ® Completeness: Cover as many important situations as is
practical. Kick completeness if you need to for simplicity!
s that all m
What'’s that all mean!?
® Many systems have a few “neat” things
U 80/2’0 rule: The last 20% takes 80% of the effort. So e eg. databases have cool concurrency models
don’t bother at the start. ® Butaren’t known for innovation in security protocols. :)
e Consider: ® OSes might have neat schedulers
o UNIX ® Buta ton of very ordinary hash tables and linked lists
e C ® Pick the innovations that matter to your system and
® Perl, Ruby, Python do:ja;nk — | o |
B . . ° nd keep everything else as simple as possible until proven
® |ETF motto: “Rough Consensus and Working Code otherwise
® Worked pretty well for the Internet ® This class: Examining powerful techniques in particular
® |terative/spiral design, XP, etc: All attest to areas

practicality of having something working quickly

® Note how and when to use them, not just what they are

® Most important: Examine spectrum of research and learn both
systems principles, useful techniques, and how to do systems
research and develop & evaluate new systems.

