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Advances in processor architecture and technology have resulted

in workstations in the 100+ MIPS range. As well, newer local-area
networks such as ATM promise a ten- to hundred-fold increase in
throughput, much reduced latency, greater scalability, and greatly

increased reliability, when compared to current LANs such as Eth-
ernet.

We believe that these new network and processor technologies
will permit tighter coupling of distributed systems at the hardware

level, and that distributed systems software should be designed

to benefit from that tighter coupling. In this paper, we propose

an alternative way of structuring distributed systems that takes

advantage of a communication model based on remote network

access (reads and writes) to protected memory segments.

A key feature of the new structure, directly supported by the
communication model, is the separation of data transfer and con-

td transfer. This is in contrast to the structure of traditional
distributed systems, which are typically organized using message

passing or remote procedure call (RPC). In RPC-style systems,
data and contiol are inextricably linked-all RPCS must transfer
both data and control, even if the control transfer is unnecessary.

We have implemented our model on DECstation hardware con-

nected by an ATM network. We demonstrate how separating data
transfer and control transfer can eliminate unnecessary control

transfers and facilitate tighter coupling of the client and server.

This has the potential to increase performance and reduce server
load, which supports scaling in the face of an increasing number of
clients. For example, for a small set of file server operations, our
analysis shows a 50’%0decrease in server load when we switched
from a communications mechanism requirhg both control transfer

and data transfer, to an alternative structure based on pure data
transfer.
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1 Introduction

The hardware base for distributed systems has changed signifi-

cantly over the last decade. Advances in processor architecture
and technology have resulted in workstations in the 100+ MIPS

range. In addition, newer switch-based local-area networks such
as ATM promise significant increase in throughpu~ much reduced

latency, greater scalability, and greatly increased reliability, when
compared to Ethernet.

In this paper we consider a novel organization of distributed
systems made possible by the new technology and an alternative
communication model. It is our contention that new network and

processor technologies will permit tighter coupling of distributed

systems at the hardware level, and that distributed system stnrcture

should change as a result in order to benefit from that tighter
coupling.

Our communication model consists of a set of primitives to ac-
cess remote memory. These primitives allow processes on one

machine access to a set of remote memory segments, which are

contiguous pieces of another process’ virtual memory. Processes

are permitted direct read, write, and compare-and-swap operations
at specified offsets within remote segments, which are protected

from unauthorized access. Inherent in our model is the separa-
tion of data transfer and control transfer, which we believe has

the potential to increase performance of distributed applications.
We demonstrate the feasibility of the model through a prototype

implemented on DECstation workstations connected by a FORE
ATM network. We then discuss a new organization of distributed

systems built using that model.

Our approach is in contrast to traditional distributed system or-
ganizations, which are based on clients and servers that communi-

cate using RPC- or message-based communication. In RPC-style
systems, data and control are unified even if one of them is unnec-

essary. Such RPC-based systems are highly tuned and relatively
efficient for current-generation networks, which are relatively slow,

relatively unreliable, and permit only a loose coupling between dis-
tributed components. However, such protocols and structures may
well be sub-optimal for next-generation networks, for which these
assumptions no longer hold.

2 The Trouble with RPC

RPC is the predominant communication mechanism between the
components of contemporary distributed systems. (Jr this contex~
we consider RPC and message passing to be essentially identical.)

For this reason, an enormous amount of energy has been devoted

to increasing its performance .Still, RPC times are substantial com-
pared to the raw hardware speed. While this cost is due in part to

the latency of network controllers and the software protocols used
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for network transfer, it is due as well to the semantics of RPC. RPC
performs two conceptually simple functions:

● It transfers data between a client’s address space and a server’s

address space. Depending on the implementation, data transfer

may be costly due to the (sometimes overly general) stubs re-

quired to marshal and unmarshal parameters for transmission,

and due to the (sometimes repeated) copying of data between

the client or server memory and the network.

● It transfers conrml from a client thread to a server thread and

back. The work to perform this control transfer involves at leash
(1) blocking the client’s thread and rescheduling the client’s pro-
cessor, (2) processing the RPC message packet in the destination

operating system, (3) scheduling, dispatching, and executing the
server thread, (4) rescheduling the server’s processor on return

by the server thread, (5) processing the reply packet on the
client’s operating system, and (6) scheduling and resuming the

original client thread.

These functions of data transfer and control transfer are fundamen-

tally bound together in the RPC model. Thus, to copy just one
byte of data from client to server, an RPC system must perform
the control transfer (e.g., the thread scheduling and management

in steps 1,3, 4, and 6 above) as well, which has little to do with the
transfer of that byte. Even in high-performance RPC systems, con-

trol transfer can take a substantial amount of time. For example,
measurements of Firefly RPC, a highly optimized system, showed
that control transfer was responsible for 17 percent of the overall
time of an RPC with no arguments and no results, and 7 percent

of the overall time for a call with no arguments and a 1440 byte
result [17].

Given this problem, we should ask whether distributed applica-
tions require a single pridtive that unities data and control &ans-

fer. To examine this question for one application, we consider
NFS, which is probably the most common example of a distributed
service in daily use. We instrumented and measured the primary

NFS file server for a collection of 80-100 workstations in our

department. Most of our workstations have local disks where in-

dividual user files are stored. The file server exports X-terminal

fonts, source trees for systems like the Uhrix kernel and GNU dis-
tribution, and the /usr partition containing executable binaries,
in addition to hosting a small complement of users. The exported

partitions have a mix of read-only and read-write tiles, but with

a relatively higher proportion of read-only files. Table 1a shows

an analysis of operations performed at the server over the course

of several days. It is significant to note that for the most part
(i.e., for all rows except the “Null Ping”), the goal of the RPCS
in Table 1a is to transfer data-either file data or file metadata—

between the server and the client. If that data could be transferred

directly between the server and the clierr~ then we could avoid

control transfers. Thus, ignoring the issues of synchronization for

the momen~ these RPCS potentially could be replaced with simpler

mechanisms that involve only transfer of data, Jy the system were
structured in a way that facilitates such transfers.

Using an RPC scheme to perform simple data transfers has two
bad effects. FUSL there is the overhead of scheduling and pro-
cedure invocation. Further, RPC-style communication imposes a

secondary overhead, because it creates unnecessary network traf-

fic in addition to the actual data bytes being transfemed. This
additional data that is transferred due to RPC semantics can be a

non-trivial fraction of the total data exchanged. We illustrate this
phenomenon by considering the network traffic between an NFS

client and the server. We classify the activity into “data traffic” and
“control traffic”. Data traffic represents the data that is required by

the particular distributed file system protocol. That is, if there was
a communication primitive that permitted direct and protected data
transfers from server memory to client memory, this is the amount

Number of

Activity calls

Get File Attribute 8960671

Lcakup File Name 8840866

Read File Data 4478036

Null Ping Call 3602730
Read Symbolic Link 1628256
Read Directory Contents 981345
Read File System Stats. 149142
Write File Data 109712
Other 109986

Total 28860744
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Table 1a: Summary of NFS RPC Activity

I Network T-e (Mb)
Activitv Control I Data Control / Data

uWrite File Data 4 271 0.01

Overall Total 766 5573 0.14

Table 1b: Breakdown of NFS RPC Traffic

of data that NFS would have to transmit. Control traffic repre-
sents additional data that is transmitted because NFS uses RPC

as the communication primitive. This classification is significan~

because it identifies the amount of txaffic that can be eliminated by

avoiding an RPC or message passing style of communication with
its integrated transfer of control and data.

Table 1b shows the breakdown of the data and control portions

of the clientkerver traffic for the snapshot shown previously. Note
that this is a cumulative picture of the system after it has been

running for along time. We have not included the overhead of net-
work protocol-specific headers. However, we include file handles,

communication identifiers. and marshaling overheads imposed by

the RPC system. Overall, the control traffic due to the RPC model
is about 1270 of the total.

An alternative model that reduced control traffic would, in turn,

reduce processing on the server side. Most interactions between
the client and the server involve only data accesses that should

not require much server involvement. If we can elininat.e both
the traffic and the server involvemen~ we have the potential to

improve scalability by lowering both network and server load.

That potential can be realized if we use a new communication

model and a new stmtcture for distributed applications.

3 An Alternative Structure

In this section we describe an alternative structure for distributed
applications. We briefly outline the goals of our design and the

environment in which we expect to run. We then discuss the
underlying communication model that we have implemented, and

describe the structure of distributed applications using this model.

Simply stated, our objective is to improve the performance and
scalability of distributed services. To accomplish this, we consider

three important design goals. Firsg the communication system
should avoid bottlenecks that might hurt service request times.

Second, the load on server machines should be minimized, using
client machines for processing where possible, in order to improve

scalability. Third, the load on the shared network resources should
be minimized, again to improve scalability. Modern networks

using switched point-to-point links can tolerate loads better than
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bus-based networks like Etherne~ because multiple links can be
aggregated between nodes to provide increased capacity when re-
quired. However, loading at switches is a potential performance
problem that we would liie to reduce.

Our design is based on certain assumptions about the underly-
ing workstation and network environment that we expect to use.
We wish to build tightly-integrated distributed system clusters,
consisting of a modest number of high-performance workstations
communicating within a single LAN-connected administrative do-

main. Newer LAN technologies include hardware flow-control and

bandwidth reservation schemes that can guarantee that data pack-

ets are delivered reliably [1]. We therefore feel justified in treating
data loss within the cluster as an extremely rare occurrence, and

regard it as a catastrophic event. This permits the use of simplified
communication primitives, such as our simple readlwrite primi-
tives; a request-response protocol, e.g., RPC packet-exchange, is
not needed for reliability and need be used only if a response is

required by the sender.
The particular communication model that we use is based on

the notion of remote network memory. In this model, processes
on one machine can directly read and write memory within the
virtual address spaces of processes running on other machines on

the network. The remote read/write requests are data transfer only;
that is, no cooperation is required from the remote process whose

address space is being read or written. If control transfer is desired,
however, a remote process can be optionally activated through a

separate control transfer mechanism. By separating control transfer
from data transfer, each can be optimized separately.

3.1 The Communication Model

Our model consists of a set of communication primitives to access
remote memory. At an abstract level, this communication model
consists of a set of remote memory segments and operations defined
on them. Segments are contiguous pieces of user virtual mem-

ory; they are defined by user applications and controlled through

descriptors maintained by the controller and privileged software.
Applications exchange segment information through a higher-level

protocol implemented by a segment name server. Once exchanged,
descriptors can be named by the communicating parties, permitting

direct access to data at specified offsets within the remote segments.

Data operations are supported through special meta-instructions,
described in detail below. Segments are protected from unautho-
rized access, because applications can selectively grant or revoke

access rights to their exported segments.

3.1.1 Memory Instructions

We now present the remote memory model, which is defined as

a set of co-processor meta-instructions. (In the next section, we
will show how these co-processor instructions can be efficiently

emulated without special hardware support. Complete details of
the model and its implementation can be found elsewhere [23].)

The co-processor contains descriptors that define remote memory
segments; each descriptor includes the destination segment size,
remote node address, and protection information for a segment.
There are three non-privileged meta-instmctions supported by the
interface: WRITE, READ, and CAS (compare-and-swap).

The write instruction has the form: WRITE rd, of, count. nodfy.
Rd specifies a descriptor register in the co-processor that identifies
a remote memory segment. The descriptor includes the destination
segment size, remote node address, and protection information.

OF denotes the starting byte offset in the segment for the write.
Counl specifies the number of bytes to be written. In one variant

of the write operation, used for small data transfer, the data for the
write is taken from a set of message registers shared between the

sending processor and co-processor. Another variant of the write,

(but not described here) is also available to transfer blocks of data
directly from source memory to remote destination memory. Nof~JjJ

indicates whether the remote destination is to be notified when the
data reaches there.

On a write instruction, the co-processor verifies the rights of
the sender. If the check is successful, it formats the data from
the registers and sends it to the remote destination together with
a descriptor identifier, offse~ and count. The write operations

are non-blocking. Further, when a write successfully completes

locally, the co-processor only guarantees that the data has been

accepted by the network, not that it has been delivered to the

destination.

On receiving a write request, the remote co-processor uses the

segment descriptor number, the offse~ and the size to validate

the request. The descriptor identifies a virtual address range within
some process. The co-processor reads the address translation tables
for that process and writes the data to memory.

The read instruction has the form: READ rs, so~, count, rd, dofl,
not~fy. Rs and so~ specify the remote source segment and offset
where the data to be read can be found. Rd and do~ define a local

destination segment and offset where the data is deposited. The
READ request is non-blocking, i.e., the issuing process is allowed

to proceed. When the data is returned from the remote processor,

it is deposited in the reader’s address space. No message registers
need to be specified for a READ, which simplifies its operation.

Nudfi indicates whether the reader should be notified when the
read returns the data. In the absence of notification, the reader has

no way of knowing that the read returned data except by repeatedly

checking the destination memory location.

This remote memory model is more efficient than message pass-

ing for data transfer, because loads and stores specify the ultimate

destination of the data in memory. In contras~ message passing
models specify only communication end points, such as sockets,
which typically necessitates overhead in demultiplexing and data

copying.

The CAS instruction is used to provide low level synchronization

for communicating entities by way of an atomic compare-and-
swap operation. It has the form: CAS rd, doff, rs, sofl, old-value,

new-value. Rd and dofl specify the remote location (segment
and offset) whose value is to be compared and swapped. Old-
value specifies the value against which the contents of the remote

location is compared. New-value denotes the new value that is

to be atomically written in the remote location if the comparison
succeeds. Rs and soy specify a local segment and offset that will

contain the result of the compare-and-swap, which is either success
or failure.

Many characteristics of a workstation cluster make it necessaxy
to provide functionality beyond simple reads and writes. These

are related to sharing, protection, independent time-slicing among
nodes, and other factors. Thus, in addition to simple memory in-

structions, our model and implementation explicitly support mech-
anisms to accommodate these special needs. These mechanisms

include (1) descriptor maintenance, (2) export and import of seg-

ments, (3) application-based pinning/unpinning of virtual memory

pages, (4) segment write inhibit for synchronization, and (5) con-
trol transfer. Most of these details do not concern us here, however
we describe the control transfer mechanism below.

Control transfer and data transfer are separated in our model.
For instance, when data arrives at the destination it is written to
memory but the destination process is not automatically notified.
Recall that the READ and WRITE instructions have a bit called
not~flthat is used to provide control over notification. In addition,

each segment descriptor contains a notification control flag that
can be set by the host in one of three states: (1) always notify,
which causes the destination to be notified whenever a packet

destined for that descriptor arrives, (2) never notify, which causes
the destination to be never notified, and (3) conditionally notify,
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which causes the destination to be notified only if the notifi bit is

set on the remote request instruction.

Our model does not impose or support a particular control trans-

fer mechanism. The transfer of data is not tied to the execution of a

particular thread or a procedure. The model we propose is flexible

yet simple and is amenable to very efficient implementations.

Our model has much in common with Spector’s remote refer-

ences [19]. Like his approach, we have chosen simple primitives
that allow an efficient implementation on contemporary worksb-

tion clusters. We have extended the remote access primitives to

incorporate virtual memory, protected access, and time-slicing on
workstations. These issues were largely unaddressed by Spector’s
work on the Alto [22], which had neither virtual memory nor en-

forced address protection among a set of applications. Spector
distinguished between primary operations that were performed by
a special communication process, and secondary operations that

were performed by a regular process. Secondary operations in-

volved context switch overheads and packet demultiplexing and
were meant to implement long running remote operations. Pri-

mary operations were meant to implement simple operations like
remote fetch and store. This distinction is loosely related to our
notion of separating data and control.

3.1.2 Implementation Overview and Performance

We have implemented the remote memory model using a software

layer on top of an existing ATM host-network interface. We use

FORE TCA-100 host-network interfaces to connect our DECsta-

tion 5000s to a 140 Mb/s ATM network. The interface is located

on the TURBOChannel I/O bus and does not have DMA capabili-

ties. Instead, it implements two FIFO queues, one for transmitting

ATM cells to the network and the other to buffer received cells.
Processor accesses to these FIFOS are performed a word at a time.

The bulk of the communication model is implemented in system

software running inside the kernel. The performance critical meta-
instmctions (e.g., READ, WRITE, and CAS) are implemented as

MIPS machine instructions, using unused opcodes from the R3000
instruction set. Thus, these meta-instmctions can be directly exe-

cuted by user programs; meta-instmction execution causes a rapid
trap to a carefully tuned assembly routine, which emulates that

instruction in the kernel. The implementation guarantees that a

single-word local access (read/write) is atomic with respect to a

remote access (read/write) involving that word. All the system
software and emulated instructions are integrated into an otherwise

standard DEC Ultrix kernel. Protection is provided by the emula-
tion code, which checks the validity of all remote accesses using

in-kernel tables containing address translation entries for each seg-

ment. In the case of data-only transfer, remote requests do not

require the receiving process to take any action. The co-processor
emulation code in the kernel does all the necessary processing.

Since our model is implemented by software emulation in the

Ultrix kernel, we have integrated control transfer using tile de-
scriptors. Associated with each segment is a file descriptor that

the user can access. Normally, a descriptor access will block the
process. However, whenever an incoming operation specifies a

control tiansfer operation, the file descriptor becomes ready for
reading with a small amount of control information. Using the

standard “select”, “read”, “fcntl”, and “signal” system

calls, a process has some degree of flexibility in receiving notifi-

cations. When a remote request requiring user notification arrives
on a node, the system invokes a user-specified signal handler pro-

cedure.

Table 2 summarizes the performance of our implementation.
The latency represents the elapsed time for performing single-cell
accesses. Each single-cell read and write operation moves 10
4-byte words. Throughput is measured using the block write primi-

tive on 4K byte blocks (the block read yields essentially identical

Read Write CAS

Latency (vs) 45 I 30 38

Throughput (kfb/S) 35.4

Notification Overhead (w) 260

Table 2: Performance Summary of Remote Memory Operations

performance). The notification cost is the overhead, in addition

to the read/write request, that is incurred when the notification
bit is set in an operation. The measurements shown are between

two hosts connected directly without a switch; we expect next-
generation switches to introduce only small additional latency.

As Table 2 shows, we achieve a latency of only 30 ps for a

remote write operation containing one ATM cell (40 data bytes).
For comparison, a processor-local write of that size is only 15 times

faster on the same hardware. A remote read takes longer than a
write-45 ps—since one cell must be sent in each direction. A

remote compare and swap is slightly faster (38 ps) because there
are fewer memory accesses on the sending and receiving sides.

It is important to note that although the FORE ATM network
has a bandwidth of 140 Mb/s, the best achievable memo@o-

memory throughput on the DECstations with the FORE controller
is considerably less than this. Our implementation achieves 7t)~o

of the performance that the raw controller hardware is capable of.

3.2 Structuring Applications

The objective of our structure is to separate control transfer and
data transfer in a distributed service, in order to remove superfluous

cross-machine con@ol transfers, while optimizing data movement.
We use the communication model described in the previous sec-

tion to effect this separation. Our structure has four important
componen~s:

●

●

●

●

Clients and Servers. The system is structured as clients and

servers, as in existing distributed systems. Clients and servers
exist on different machines within the cluster, connected by a

high-speed local-area network.

Specialized Data Transfer Mechanism. We use the specialized
communication primitives described in the previous section to

support direc~ protected, remote memory access.

Server Clerks. Each distributed service has server clerks that
execute on the client machines. All client-serwer interactions are

done through local cross-addressspace communication between

the client and the server clerk. Server clerks do not trust their

clients; however server clerks and servers are considered part of
the same service, and trust each other.

Clerk-to-Senler Data Transfer Clerks and servers can cache
data if necessary. Commrrn~cation might be necessary between

clerks and the server to keep the caches consistent. Whenever
possible, this communication is done using the remote read/write

data transfer mechanism.

Figure 1 shows the organization of a distributed service along
these lines. Notice that for the most pam control transfers are re-

stricted between a client and its server-clerk. That is, control trrms-

fers are primarily intra-node cross-domain calls, which have been
shown to be amenable to high-performance implementation [2, 13].
Notice also that our organization maintains the firewalls between
untrusted clients and services and the abstractional convenience of
procedural interfaces, without relying on conventional mechanisms

like RPC for cross-machine communication.

There are obviously many possible variations to the scheme
shown, which we do not discuss explicitly; for example, in some
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Figure 1: Structuring a Distributed Service Whhout RPC

cases it might be possible to eliminate the server completely and
have the state maintained by the clerks alone.

Our structure bears resemblance to a traditional distributed sys-
tem that does caching, however, it has some distinctive features.

First we use local caching to reduce cross-machine communica-

tion (this is similar to earlier systems). Second, we specifically

eliminate cross-machine control transfers in many cases where the
clerk can satisfy the client request by data transfer only. Finally,
we simplify data-only communication in both directions; that is, it

is possible for the server to eagerly update data on its client-side
clerk, or for the clerk to eagerly push data to or pull data from the
server.

Our use of clerks has much in common with earlier systems,
e.g., Grapevine [5]. For example, the client is not aware that it is

talking to a server’s clerk. It sees the same abstract RPC interface,

albeit local RPC. However, there are some important differences

in our use of clerks. Critically, in traditional organizations, clerks
communicate with servers using cross-machine RPC, in contrast to

our organization, which explicitly avoids its use where possible. In
our design, clerks and servers have direct (remote) access to each

other’s memory and are consequently more tightly integrated with

each other.
In our system, the state of the server is distributed and cached

locally. Thus, there is a cache coherence and consistency issue that
needs to be addressed if client requests are to be correctly satisfied.

While the details of the coherence protocol are not significant it
should be noted that we do not require a broadcast capability from

the network or the communication mechanism. We do not believe
there is one single cache coherence policy that is appropriate for
all services. Our structure permits an individual service to use
schemes that are most convenient for that service.

In the usual case, we expect the communication between clerks
and the server to involve only one-way transfer of data. Since there
is no transfer of control to generate responses or acknowledgments
on the server, we expect server load to decrease relative to a request-

response model.

3.3 Locating Remote Data

A key feature of our organization is that the parts of the system that

are distributed across the network are parts of the same application.

Thus, we can exploit application-specific information to optimize
the cross-machine transfer of data and control. For example, the

server and server-clerk understand the organization of each other’s

data structures: a server-clerk can read and possibly modify the
server’s data stnrctures, and vice versa. (h Section 4.1 we show a
particular organization of data that allows this kind of access.) This

is in contrast to traditional organizations, which typically cannot
exploit such knowledge, because the distributed components are

different applications separated from each other through message

exchanges.

3.4 Synchronization

The system structure we propose has several options for handling
synchronization issues that commonly arise in building distributed

systems.

The first option is that in certain situations we can do without

synchronization at all. For instance> consider tie case of load bal-
ancing in a workstation cluster. Each workstation could update a

shared variable with its current load using remote writes. Other
workstations would read this value and take appropriate load bal-

ancing actions. In this situation, strict synchronization of the data
is not required because it is being used as a hint. A similar solution

applies in other situations in distributed systems where hink me
used.

Often, hints alone will not suffice. In some of these cases,
one can exploit certain atomicity properties of the communication
model for achieving synchronization. For example, we mentioned
earlier that single-word local memory access are atomic with re-

spect to remote memory accesses. This property can be used to
ensure, for example, that a flag word in a record is atomically up-

dated. This allows a sufficient level of synchronization in cases
where there is single writer and multiple readers. In fac~ we use
precisely this mechanism in the implementation of the name server

described in Section 4.1.

A third option is to use the synchronization provided by the CAS

operation supported by the communication model. This primi-
tive is sufficiently powerful to build higher level synchronization

primitives.

A final option is to use the control transfer option supported by

the communication model to implement RPC-like synchronization
semantics. In other words, by providing a mechanism to implement

RPC-like behavior, we allow applications to use the implicit syn-
chronization inherent in RPC when necessaty. We should note in

passing that, traditional organizations, with their exclusive reliance
on RPC semantics, offer only a single option for synchronization.

Unfortunately, this option has performance disadvantages that can-
not be avoided in current systems.

3.5 Security

In the new organization, clients access the services of the clerk
using local RPC, which maintains complete protection firewalls.
Thus, clients cannot damage servers or their clerks.

Further, our communication model based on remote segments is

secure under the assumption that the kernels and privileged users
on each machine are trusted. Whb this assumption, it possible for

servers and server clerks, which execute on different machines, to
trust each other. This might appear to be a security flaw in the

design, but it need not be so. For instance, many environments
routinely share files through NFS servers with exactly the same

guarantees.

However, there are environments where such trust may not be
warranted. Distributeds ystems running in these environments have
traditionally used encryption techniques to ensure authentication

and security [4, 21]. The underpinning for such schemes is that
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data is encrypted and decrypted using secretor public key schemes.

The choice of the particular communication primitive-RPC or re-

mote memory-is irrelevant. Whtr our communication model, this
implies that each read and write has to be encrypted and decrypted.
The software emulation technique that we use in our implementat-
ion will not provide adequate performance in this case. However,

it is feasible to do encryption and decryption in hardware. In fact,

the AN1 controller [18] has mechanisms to decrypt and encrypt

data using different keys as data is transmitted or received. Thus,
we expect that with suitable hardware support the communication

model and the structure that we propose can be used in a secure
fashion.

3.6 Heterogeneity

It might appear that the proposed shucture and communication

model rely heavily on the existence of a set of homogeneous ma-

chines. In facL this need not be the case. The most common case

of heterogeneity— different byte orders-is straightforward to ac-

commodate as a simple extension to the current implementation of

the communication model. Recall that since we use programmed
I/O to move data between the controller FIFO and memory, byte

swapping can be readily performed. This scheme requires a bit
in each incoming request to decide whether to swap or not. Even
with a hardware implementation of the model, this functionality

can be provided. In fact, even very early network controllers, such

as the Ethernet LANCE, have a facility to swap bytes during data
tiansfers between host memory and the network.

Other kinds of heterogeneity, such as different word sizes or
different floating point formats, are more difficult to deal with. We

expect that some form of presentation conversion, as found in RPC
stubs, will be required before applications can access the data sent
from a heterogeneous machine.

3.7 Cache Consistency and Recoverability

Our structure encourages local caching of data and state, and thus
cache consistency mechanisms and recoverability from machine

crashes are important concerns. However, these issues are inde-
pendent of whether we use our structure or a traditional RPC-based

structure. For example, many file system designs, e.g., Sprite [15],
SNFS [20], and AFS [11], which use RPC, require mechanisms

for recoverability and cache maintenance.

In traditional RPC-based distributed systems, the RPC runtime

and transport implement timeout and exception mechanisms to au-

tomatically notify the user of remote machine failures. It might

appear that in our organization, fault-tolerance might be a diffi-
cult goal to achieve. In fact, while the read/write primitives by

themselves do not provide fault-tolerance, they can be used by

a language or runtime system to provide notifications of remote
machine failures.

The key distinction between RPC-based services and our orga-
nization is that RPC-based systems integrate fault-tolerance with

data and control transfer. In our organization, the communicati-

on primitives by themselves do not provide fault tolerance, but

they can used with timeouts to provide the required level of failure
protection. For example, a service that required fault tolerance

could implement a periodic remote read request of a known (or

monotonically increasing) value. Failure to read the value within
a timeout period can be used to raise an exception. Notice also

that in both approaches, the fundamental mechanism needed for
failure detection is timeouts. Thus, as long as the system supports
efficient timeout mechanisms, we expect comparable functionality
can be achieved with either approach.

4 Example: A Simple Name Server

To rzain experience with our restructuring strategy we performed
two-studie~. In the firs~ we implemented; name-server-that is rel-

atively simple, but which exposed us to some of the implications
of the new structure. In the second study, we estimated the perfor-

mance improvement of minimizing control transfer in a traditional
distributed file system. This section describes the first of these

experiments, and the lessons we learned from it. The following
section describes the second study.

For the future, we expect distributed systems based on our stmc-
ture to run on workstation clusters on highly reliable networks.

For the purposes of our experiments, we used a testbed that be-

haved like our target environment. Our testbed consists of a pair

of DECstations connected to a switchless ATM network. Being a
private, isolated network, the environment is practically error free

and meets our assumptions concerning the processor and network
environment.

4.1 Design of the Simple Name Server

Recall that our communication pfiltives rely on segments. Users

export segments by name for other users to subsequently import.

An owner of the segment may also revoke a segment (i.e., make
it unavailable). The purpose of the name server is to maintain the

registry of segment names and information so that importers and

exporters can communicate.

The name server is logically stmctured as a centralized service,

but it is physically organized as a distributed collection of clerks,
one per machine. Unlike the organization shown in Figure 1,
there is no centralized server. Communication between the clerks
implementing the distributed name service is done using the remote

access primitives themselves. Certain well-known segment names
have been reserved on each machine to allow the name service to

bootstrap itself.

The name server implements procedures to add information

about exported segment names, to lookup name information, and to

delete names. The name server is trusted and privileged; its clients
are not ordinary users but kernels. The relationship between a user

exporting or importing a name, the kernel, and the name server is
described below.

A user exports a segment by name by making a kernel call, which
is turned by the kernel into an ADDNAME RPC to the name service.

This RPC is serviced by the local clerk of the name service, which

enters the relevant information into its name registry. A segment

import by a user results in a kernel call, which in turn makes a

LOOKUPNAME RPC to the name service. Similarly, segments that

are deleted by users result in a DELETENAME RPC.

Each time a segment is exported, the kernel assigns it a monoton-

ically increasing generation number. Generation numbers accom-

panying each remote request allow the kernel to disallow operations
on stale segments. Generation numbers allow a simple implemen-
tation of the delete operation within the clerk. A delete operation

merely marks the entry invalid in the local cache. There are suffi-
cient bits in the generation number so tha~ even under heavy load,
it wraps around slowly enough to allow name clerks considerable

latitude in propagating deletions.

Name additions are handled slightly differently from deletions.
One option we considered was for the clerk on the exporter’s ma-

chine to propagate the name to each of the other clerks. Thus, a
subsequent LOOKUPNAME RPC can be satisfied by a simple local
lookup. Unfortunately, this can limit the scale of the name service,
because it involves wlites to all remote machines, most of which

may not require the name in any case. A better option, and the one
we have implemented, is for the clerk on the importing machine to

do a remote read operation to retrieve the name.
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A name server clerk periodically refreshes its cache of imported

names. At the end of each refresh operation, imported entries that

are no longer valid are purged from the name cache and from the
kernel’s tables. Thus, a lookup operation after a cache refresh
will cause a remote read to get the most up-to-date information.
Also, after a refresh (but not necessarily before), remote operations

using stale entries will fail locally at the source allowing the source

a chance to recover. Further, the source can timeout on a read that

uses stale information and redo the import operation. In addition
to these mechanisms for coping with stale name entries, users can
force a specific import operation to do an explicit remote lookup.

4.2 Implementation

Name clerks are created at boot time. When each name clerk is

started, it exports a well-known segment granting write privileges
to other clerks. After a name server clerk has exported its segment,

it imports the well-known segment from each of the other machines

on which it expects to do lookup operations.

Each clerk’s well-known exported segment is used as a registty
to hold information about other named segments. The registry is

organized as an open-addressed hash table. When a user exports
a segment, the information about the segment is hashed by name
into the clerk’s hash table. Each clerk uses the same hash function.

Thus, unless there are collisions, information about a particular

name will be in the same position on all the clerks. This is a
convenient performance optimization as described below.

In response to an ADDNAME RPC from the kernel, the clerk
adds the information about the exported segment into its hash table
using local memory operations. Subsequently, a remote importer,

via a kernel call, can contact its local clerk, and present a name for

retrieval. The clerk first checks in its local table for the appropriate

name. If it finds it, the information is returned to the kernel, which
updates its tables and returns a handle to the user who made the
import call. If the clerk’s local lookup fails, it uses a user-supplied
hint. specifying a remote machine, to perform a read operation

on the appropriate remote clerk’s well-known segment. It is in
this situation that using identical hash functions on all clerks pays

off. Identical hash functions allow the importer’s clerk to locate
the name usually with a single remote read operation, Sometimes

this will fail, for example, if the remote clerk encountered a hash

collision when originally inserting the name and rehashed the name

to some other hash bucket. If the result of the read operation does
not return the appropriate name, the local clerk has three options:

(1 )keep probing different hash location using remote reads until the
record is located or the hash table is exhausted, (2) use a remote
write with control transfer to request the other side to check its
name table, and (3) probe a few times and then transfer contiol.

The choice of which option to use is application dependent and

is related to the cost of doing lookups, the number of expected

lookups, and the cost of transferring control. Given the relative
costs of remote data transfer in our implementation, we use the

first option, because that gives us the best performance. Control
transfer is a viable option in our case only if we expect seven or
more collisions to occur in the hash table.

In the case of this particular name server example, the organi-
zation follows the ideal model described in earlier sections. Thus,

all remote communications involve only transfer of data. Cornrnu-
nication between the user, the kernel, and the clerk involves only
local transfer of data and control.

We should mention that the name server described here is a

low level serwice. Its only responsibility is to help the kernel
manage the export and import of segment name information. We

have therefore used a set of coherency mechanisms, such as gen-
eration numbers, periodic cache flushes, and user-supplied hints,

that are appropriate to this service. Undoubtedly, other kinds of

II Elapsed Time (MS)
ODeration I Cached I Uncached I

u . .

11 Exporl (AODNAME) 665 WA 11
Import (LCOKUP) 196 264

Revoke (DELETENANE) 307 NIA
LOOKUP with notification 524

Table 3: Name Server Performance

name services may require different coherency guarantees. By im-
plementing the segment name server, we gained experience with
locating information, synchronization, and organizing clerks in the
new structure.

4.3 Performance

Table 3 shows the performance seen by the user for exporting,

importing, and deleting a segment. On all three operations, the
kernel mediates between the name server and the user. Notice that

the difference in time (68 ps) to perform a lookup when the data is
available locally and when it is not is comparable to the cost of a
remote read operation (45 ps) from Table 2. That is, cross-machine
communication cost is basically the cost of simple data transfer.
The information that is retrieved on a lookup operation fits in a

single ATM cell. With improved same machine communication
performance, we expect the overall performance to improve even

further.

The last row represents the cost of doing a lookup operation
with control transfer. In this case, the importing clerk performs
a remote write with notification. The write contains arguments

for the lookup operation including a pointer back to the importer’s

exported memory segment. Upon notification, the exporting clerk
uses the arguments to do the lookup. The results of the lookup are
directly written to the importing clerk’s memory using a remote
write. In the meantime, the importing clerk spin waits (at user level)
for the data to arrive. Another, although more expensive option is

to not spin wait the importer, but instead have the expor@r use a
remote write with notification.

5 Example: A Distributed File Service

Distributed file systems, such as NFS, are perhaps the most com-

mon examples of distributed services in daily use. Most distributed

file systems are implemented using RPC-based clients and servers.
However, much of the traffic in a file system need only involve
data transfe~ the control transfers are often an unneeded cost im-
posed by the use of RPC between clients and servers. Recall from

Section 2 that the benefits of eliminating control kansfer are: (1)
lowered overheads due to context switching, blocking, and proce-

dure invocation, and (2) eliminating the processing overhead for
unnecesswy data traffic. In this section, we analytically evaluate

the impact of the new structure on the performance of a distributed
tile system service using a functional model of the system.

5.1 The Distributed File System Model

We assume that the client machine runs a server clerk and that

the clerk and the server cache data. This is fairly general model

and even encompasses systems such as traditional NFS (where the

client kernel acts as the clerk for the remote server), Since we use
caches on clients and servers, it is necessary to have a policy for

cache-consistency. However, we are not directly concerned with
the particular choice of protocol that is used and our system model
does not implement one. Many coherency protocols are well



known and are in use in cument distributed file systems. (Even
NFS has a cache-consistency policy, albeit a weak one.)

Although our file system model does not explicitly account for

coherency traffic, we believe coherency schemes can be built using
our communication primitives and our file system model. For ex-

ample, workstation-cluster file system designs such as Calypso[14]

use an RPC-based distributed token management scheme to han-

dle cache coherence. This scheme can be extended to use our

communication primitives without involving control transfers in
most cases. Token acquire and release can be implemented using
compare-and-swap operations. Token revocation is trickier. One
option is to use control transfer (e.g., using Hybrid-1 as described
below); another is to delay revocation during certain conditions,
as is done in Calypso, which can be done without control transfer.

For the commonly occuming sharing patterns in distributed file
systems, we expect the usage of control transfer for coherence to

be rare.

Our system model organizes the cache into different distinct

areas, each containing different types of information as shown

below. This organization allows the client-side server clerk to

probe server data structures. This allows us to exploit pure data
transport mechanisms without the penalty of control transfer.

File Data. This is the traditional file buffer cache that caches
regular file data and forms the bulk of the cache. Data within

the cache can be located using a file handle and block number
within the file.

Name Lookup Data. This area contains information to translate
file names to tile handles. Most conventional systems have a

separate name cache that serves this purpose.

File Attributes. This cache area contains file attributes such as
creation time, file size, etc. Entries in this cache can be retrieved

given a file handle.

Directory Entries. We keep the contents of directories in a

specifically designated area if the cache. This allows fast di-
rectory searches. From measurements on our departmental file

server, which is typical, we observed that the entire directory
contents of the server could be cached with about 2.5 Mbytes
of data. With an additional 40 Kbytes of memory, even sym-
bolic link information on our server can be completely cached.

Caching this information is helpful, because reading symbolic
links and directory entries accounts for about 8% of the activity

in Table 1a.

Our model of the file service is simple but captures the perfor-

mance effect of separating control transfer from data transfer. Our
underlying communication primitives allow several alternatives to

coordinate the movement of data between server and clerk caches.

We consider three of these alternatives below:

●

●

●

Write Requests Only. The first alternative, and the simplest, is

for the source of tire data (server or clerk) to supply data to the
destination using remote writes with no notifications at all.

Read Requests Only. The second alternative is for the eventual
destination of the data to fetch the data from the source. This

was the method of choice in the name server of the previous
section. In the current experiment we use block read requests
to fetch data from the server.

Hybrid-1. Unlike the previous two schemes, which are pure
data transfer schemes, this scheme uses a single write request
with notification, followed by one or more return write requests.
This was one of the alternatives we considered in the name
server example. The destination makes a write request (with

notification) describing the data transfer parameters. The source

then performs one or more return write requests back to the

destination.

5.2 Performance

To evaluate the impact of separating data and control transfer, we

compare the performance of two alternative structures for a dis-

tributed file system. From the perspective of a distributed system,
we are interested in two performance metrics: the total latency

seen by a client and the load on the server.
We assume both alternatives cache data locally. However, in the

first alternative, the file system uses a fast RPC-liie cross-machine

mechanism, viz., Hybrid-1. This is similar in spirit to the design
of traditional RPC-based systems, e.g., NFS.

The second alternative uses the proposed new s&ucture and relies

primarily on a pure data transfer scheme. That is, the clerks and

the server directly access each other’s caches using remote reads

and writes, just as was done in the name server example of the
previous section. If there is a miss in the remote cache, control is

transfemed to the remote process, where a procedure is activated to

locate the missing data and write it back to the source using remote
write operations.

We are assuming in our model of the file service that the caches
(as described in Section 5.1) are organized as several hash tables in a

fashion similar to the name service. Thus, we expect synchronized
access to data to be implemented analogously to the name server.

That is, a file system clerk would perform one (or more) remote
reads to fetch a block of data or metadata. A flag word in the block

would indicate if the data is valid or not. The atomicity of remote

access guarantees this. If the data is valid, then a comparison of the

block number shows if there was a miss or not. Thus, we expect

only minimal overhead (a few compare and branches) for proper

synchronization and miss detection. We have therefore ignored
this cost in the comparative measurements below.

For the sake of concreteness, we assume that the file system
presents an interface similar to NFS, i.e., it implements operations

kke those shown earlier in Table 1a.
Since both the schemes that we compare cache data locally, the

performance of client requests that hit in the local cache would
be similar in both. However, the performance of client requests
that miss in the local cache could be different. In the first scheme,

using Hybrid-1, client latency is affected by (1) the time to send
the request and control information to the server, (2) the processing
time on the server, and (3) the time to write the results back to the

client. To evaluate these components, we directly measured the

cost of all three for each file system operation. Items (1) and (3)
were measured from our implementation of Hybrid-1. To estimate

the processing time at the” server, we measured the processing
times on an actual NFS server with warm caches on an isolated

ATM network. Ultrix RPC and marshaling costs are not included

in this measurement. In the second scheme, the latency seen by the

client is dependent primarily on the low-level cost of emulating the
remote memory operations, since there is no server involvement.

Figure 2 compares the performance of the two schemes for

representative file operations. The measurements were done on

DECstation 5000/200s connected to a private ATM network. We

assume 100?ZOhit rates in the server cache. We also neglect the
communication cost between client and clerk. Thus, these are

best-case figures. Note however, that if there is a miss in the server
cache, overall performance will be dependent on the disk transfer

time rather than differences in the structure of the service. For
each file operation, we show the total latency for that operation

implemented using Hybrid- 1 (HY), and the total latency for the
pure data-transfer scheme (DX). In the case of Hybrid-1, the latency
includes two components: the time to transfer data and control, and
the server processing time. In the case of pure data transfer, the

entire latency is due to the data transfer primitives. We must point
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Figure 2: Request Processing Latency Seen by Client

out that in the pure data transfer scheme, we have ignored the small

cost the clerk incurs in calculating the location of the data that it

wants to retrieve from the remote side. This will be typically on the

order of a few tens of microseconds to calculate a hash function,

and can be neglected relative to the remaining times.

Notice that in all cases, the pure data transfer scheme does

significantly better than the RPC-like scheme. As the amount of
data transferred increases, the benefits of separating control and

data decrease a little. This is a natural consequence of the fact that
the cost of a single control transfer operation is now amortized over
a larger data transfer.

Separation of data and control yields better performance for the
operations shown in the graph because each operation is logically
a simple one involving only data transfer. The costs of context
switching and procedure invocation are overheads of tie commu-

nication primitive. Thus, a specialized data transfer operation is

advantageous.
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Figure 3: Breakdown of Server Activity
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Figure 3 shows a detailed breakdown of activity on the server
CPU. In the pure data transfer scheme, the server CPU is in-
volved only in emulating incoming and outgoing remote memory

operations. Wlti a communications co-processor, even this Cpu
involvement could be eliminated. In contrasg the hybrid model
incurs the cost of control transfer and the cost of executing the
server’s procedure, in addition to the cost of data transfer.

For example, in the LookupName operation, the only server

110

processing for the pure data transfer scheme is data reception and
reply, which is the service-side processing of the remote memory

read of the name lookup cache. For the same operation in the hybrid
scheme, there are four components: data reception (of the request),
control transfer, procedure invocation, and data reply (sending the
response), as shown in Figure 3. On the average, we see that

the pure data transfer scheme imposes less than half the server
load imposed by control and data transfer schemes; therefore, the

server should be able to accommodate more clients using pure data

transfer. Once again, we note that as the amount of data transferred

increases, the overhead of control transfer can be amortized more
effectively.

6 Related Work

Section 3.1 has already described our relationship to previous work
like Grapevine [5] and Spector’s remote reference primitives [19].

This section discusses other related systems.

Shared Viirtal Memory (SVM) systems like Ivy[12] are related
to our approach. In fac~ we can implement our system organiza-

tion over an SVM system. Further, with SVM systems, the unit of

sharing and data transfer is usually a page, which in modern pro-

cessors can be upwards of 4K bytes. This large size might lead to

false sharing between clerks resulting in suboptimal performance.
Finally, most SVM implementations require non-trivial processing
and control transfer at the machine that faults the page in, which

is contrary to our approach. Specialized SVM systems like Mem-
Net [9] have been implemented in hardware tn gain performance.

However, by requiring all shared memory to be coheren~ these
schemes rely on complex network interfaces and sometimes on
broadcast primitives from the network. In contras~ our system
organization relies on the existence of very simple communication
primitives and requires no coherency guarantees.

Our system is also related to the Channel Model [10], Network

Objects [3], and other systems, like V [7], that use RPC for small
data and a separate bulk data transport mechanism. Unlike most of

these systems, in our model, there is no explicit activity or thread
of control at the destination process to handle an incoming stream

of data. Also, no specific request is required by the receiver to
initiate data receipt.

Active Messages is a low-level mechanism that has been pro-
posed for communicating between nodes in a dedicated, closely-
coupled multicomputer [24]. The key idea in this design is that an
incoming message carries with it an upcall address of a handler that

integrates the message into the computation stream for the node.

The general notion of remote memory access (as embodied in our

model) is substantially different from the notion of interrupt driven
messages that is at the core of Active Messages. In particular, as

mentioned in previous sections, our model explicitly separates the
notion of data transfer from control transfer.

Network interfaces for multicomputers like SHRIMP [6] and
Hamlyn [25] share a common ancestry with us to Spector’s work.

Both of these interfaces use remote writes as the basic mechanism
for data transfer and use segment or page descriptor based schemes
to ensure protection. There are many differences as well, e.g.,
SHRIMP focuses ori providing memory coherence. Neither sys-

tem is primarily concerned with structuring distributed systems by
separating contiol and data transfer.

7 Concluding Remarks

This paper has described a new structure for building distributed
systems. Traditional] y, theses ystems have been organized around
the RPC-based clientiserver model for a variety of good reasons:

a simple programming paradigm, networks have low bandwidth,



high latency, and unpredictable reliability. Changes in technology

make it both possible and necessary to re-think the structure of

distributed systems. Among the things that have changed are the

bandwidth and latency of networks, and increased reliability.

Our alternative structure is based on the observation that by sep-

arating the transfer of control from the transfer of data, we can
eliminate one or the other if it is not required. The underpinning

for our technique is a set of high-performance network access prim-
itives based on the notion of remote memory. Our technique has

three elements to i~ (1) server clerks and servers that cache data,

(2) an efficient communication primitive that allows quick access

to this cached data on remote hosts, and (3) restricting control
transfers to occur predominantly within a machine boundary.

Our experiments and measurements with this structure show
the promise for improving distributed systems performance and

scalability through lowered elapsed times and significantly reduced
server load. For example, our measurements show a 50 percent

reduction in server load for NFS-style tile server operations using
pure data transfer, as compared to a communications model using
combined data and control transfer.

The proposed structure is applicable in environments other than
distributed systems, e.g., in large-scale dedicated multiprocessors,
where the cost of control transfer is high relative to that of data

transfer. Traditionally, these multiprocessor systems, e.g., the J-
Machine [8], *T [16], etc., have opted for a single primitive that

unifies remote transfer of data and control, in contrast to our ap-

proach.
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