
Distributed System
Security: The

challenges and big
picture

15-712
David Andersen

What is the target?

• Whatever the weakest link in the system is!

• “The System” means everything and everyone involved

• e.g., ATM example:

• Programmers, managers, mailers, postal system, users, tellers, algorithms,
cryptography, implementation details

• Programmers: crooks, bribe/blackmail, bugs

• Employees: sell acct #s and PINs; address change example

• Users: social engineering attacks (“hi, this is Dave from Credit
Management Union, could I get your PIN?”)

• Crypto: oops, we used a Caesar cipher (WiFi?)

• impl bugs: c.f. worm paper, buffer overflows, misunderstanding of security
properties and layer interactions, ...

• Human factors and technical factors

• Humans are often easier to trick

Modern analogs

• ATMs are still a popular thing to attack

• Latest: Fake readers, POS terminals, cameras

• Smartcards a possible solution, but $

• Worms:

• Some spread through exploits (morris, code red, etc.)

• Many spread through user error (“click me!”) (Storm)

• Biggest bot-nets in the world are human exploits

• Phishing

• TJX breakin (software vuln)

• SQL injection attacks (programmer errors--we haven’t made it easy
enough to do the right thing.)

Real world is messy

• Multiple vulnerabilities common

• e.g., exploit social channel to get user account; use local
privilege elevation to get root -- very common in targeted
attacks.

• Morris worm: get local accounts, hack passwords, exploit
buffer overflows, exploit trust relationships, ...

Passwords

• UNIX /etc/passwd file

• Stores crypt()ed version of password

• Modified DES hashing algorithm - multiple rounds to slow down brute-force
dictionary attacks

• 1-way, but dictionary attacks now utterly trivial

• 1,000,000 crypts/sec possible on high-end machine...

• Many newer systems use MD5/sha1 hash (multiple rounds) - e.g., FreeBSD’s
MD5 is 10x slower than crypt

• Most systems now have /etc/{shadow,master.passwd} -- only root can see
crypted password

• But it’s still valuable - lets you get to other systems

• Seeds: Prevent pre-computed dictionary attacks

• Lesson: Parameterize hash function to evolve over time (new
hashes, more rounds)

What are you protecting?

• Many vulnerabilities come from components that “weren’t
supposed” to be trusted

• e.g., address change bug (has happened multiple times in history
of banking)

• Change victim’s address to known location

• Send new ATM + PIN

• Change address back

• Software examples: exec(prog, ..., user_supplied_in)

• Does your “secure” program shell out to something else and pass it user-
supplied input? Hope that something else doesn’t have a buffer overflow/
etc.

• Requires deep understanding of dependencies of program

• And controlling/ensuring that over time!

Trust

• Many attacks exploit trust; important to understand
explicit and implicit trusts in your system

• .rhosts, /etc/exports -- explicit

• .rhosts may depend on DNS...

• DNS may be administered by another person

• Does that person understand effect of changing the mapping
for trusted.host.com to another IP address?

• All of your code trusts

• The compiler, the OS, the {ruby,python,etc} interpreter, the
3rd party libraries you downloaded, ...

Too clever by half

• “The bulk of computer security R&D is of marginal relevance to
real needs”

• “We found almost all attacks involved blunders, insiders, or both.
High tech attacks were rare, and the 2 that did occur can be seen
as effect of absence of security. However, high tech threats were
what products were designed to prevent. And product complexity
contributed to the blunders that caused real losses.”

• “Continuity matters; and we do not really understand how to
maintain effective control in an organization whose structure is
constantly changing. … It can take many years for a security
capability to mature and become effective.”

Modern example

• example from {industry, government} in 2007

(person who was clueful and in security-

sensitive area):

–“I get a lot of security best practice mandates

coming from above. Things like virus scanning,

firewall configs, application configs, etc. Problem

is, our single largest cause of security problems, by

a huge margin, is lost laptops...”

9

Real sources of attacks
• Wonderful long list of real sources of attacks:

– Program bugs: ATM code wrong 1 in x0,000 transactions

– Postal/inperson interception: capture cards & PINs in mail

– Insider thieves

• Change address, issue a card, change it back

• Put a laptop into an ATM and monitor acct numbers & PINs

• Use same keys in test/training system as real system

• Debugging backdoors left in production systems

• Politics of cost savings weakening security processes

• Code system to issue only a small number of different PINs

– Other brute force attacks

• Stand in line, watch PINs, get acct from receipts left behind

• Offline checking of PINs used too simple an algorithm

• Walk in and ask bank to change PIN, they probably will

• Build your own ATM, get people to give it acct number and PIN

On the network

• On Internet today, un-firewalled host sees

–Constant attempts to exploit prior & current

vulnerabilities

• Lots of them!

–Brute-force password guesses of common account

names

–Attempts to use host as a proxy for other protocols

{spamming, hide tracks, access data controlled by

source address, etc.}

• Only one of these things has to go wrong. :(11

Robust & Explicit Security

• “This is a failure of certification. Staff don’t have the
knowledge. Product certification should be tied to skill of
user.”

• “Robust security means systems tolerate minor errors in
design, implementation and operation without (much) loss
of security”

• “Be explicit about assumptions of properties at interface of
levels/modules; ie., naming, freshness, chaining”

– Specs should list all possible failure modes, prevention strategies for
each, implementation of each strategy, and a review process by an
independent certification body

• Make deep pockets more responsible than shallow pockets
so someone actually pays for security R&D & insurance

Commentary

• Byzantine faults are not exclusively those that are most
academic/insidious (ie., brute crypto breaking)

– Include all the common things that are possible

• Security should consider average case as well as worst

case attacks

– Threat models should include multiple concurrent failures

• Hiding in obscurity may just mean more damage is done

before weakness is found

– Expose security design, implementation, operation to
extensive inspection and criticism (open src argument)

Security Breach Disclosure Regs

Importance of Little Things

• Social engineering example:

• Step 1: Get org chart & contact info

• Step 2: Call front-line employee, pretend to be some other employee
(gives you legitimacy), ask if so-and-so is there (find someone who’s out)

• Step 3: Call someone else, say “this is person-who’s-out; I’m sick and
working from home today but needed to get something off my
computer. Could you go {do something innocuous but actually
dangerous--hooking up modem, etc.}

• Systems example:

• Get “secure” (encrypted) /etc/passwd, mount dictionary attack

• Knowing .csh history: gives lists of other hosts to target with likely same
password

• Knowing .ssh/known_hosts: Same as above, but big, automatically
maintained list...

Reflections on Trusting Trust.

 Thompson84: Ken Thompson, Comm. Of the

ACM, vol 27, no 8, August 1984.

Step 1: programs writing programs

• A self-reproducing program

–Compiled & run,

it outputs its source

• Basically, source contains

initialized static variables

containing character strings

that are the source

Step 2: bootstraping

• Bin2.1 (Src2.1) => Bin2.1

– Compiler compiles itself

– Lets change compiler source

• Bin2.1 (Src2.2) fails

– Need to bootstrap modifications

• Bin2.1 (Src2.3) => Bin2.3

• Bin2.3 (Src2.2) => Bin2.2

• Bin2.2 (Src2.2) => Bin2.2

– Intermediate, 2.3, is gone

– “code remembers what it learned”

2.1

2.2

Step 3: concealing hacks

• Mod compiler 3.1 into 3.2

• What are pattern & bug?

– Pattern is login program src

– Bug is login src w/ trapdoor

• Code inspection finds this

• Mod compiler to 3.3

– Pattern2 is compiler 3.1

– Bug2 is compiler 3.3

– If “hacked” binary 3.3 is installed,
compiling 3.1 (on disc) gives 3.3

– But, inspection sees compiler 3.1

Security Wakeup Call

• This is a Turing Award talk

– No numeric eval; but construction is convincing

• Code for backdoors

– won’t be found by source inspection if system+src install

disc comes with a false compiler binary

• “can’t trust code you did not totally create yourself”

• Made a lot of people recognize maliciousness and

cleverness in “hacking”

Voting Machines

21

That said

• It’s not just humans/etc.

–Crypto failures: 802.11 WEP is atrocious!

• Wars have been won/lost b/c of crypto breaking

–Protocol failures: (yes, WEP, but others)

–Design failures

–Implementation failures** -- buffer overflows,

SQL injections, format string attacks, yadda, yadda,

yadda.

–20 years of sendmail exploitation. :)

• Whatever the weak point is...
22

The point

• Security is a whole-system challenge

– Crypto, protocols, design, impl

– But also: UI, human factors

– Weakest link...

• Robustness and defense-in-depth

– Isolation, minimum privilege, simplicity, explicit assumptions

and dependencies

– Require multiple failures?

– Make it hard for humans to do wrong things

• Solutions are hard; require technical, social, legal changes --

better programming tools, UI understanding, user education, laws

for disclosure and prosecution, ... 23

