Threads: A Case Study

15-712 #3

To understand systems, it is not enough to
describe how things should be;

one also needs to know how they are.

- Hauser, Jacobi, Theimer, Welsh, and Weiser
“Using Threads in Interactive Systems: A Case Study”

Rare Observation & Experience Paper

10-20 years of advanced hands-on coding
2.5Mloc, | 0K files, | K monitors, 300 cond. vars

® Asserted to be largest/longest lived thread-based
interactive system

Developed for Altos & Dorados (last time)

® Data from Sparcstations using SunOS + Portable
Common Runtime

Threading while the rest of world was Process-based
® MIMD shared memory, uniprocessor

® j.e.threads were for structure, not parallel procs
Cedar - original research system (less efficient?)
GVX - product split from Cedar in ‘83

PARC & Mesa again

® [nsert wow-ness about PARC again
® Huge, successful, innovative systems research lab
® Mesa:
® Native monitors (think “java synchronized methods”)

® Preemptive, strict priorities. 50ms scheduling quantum.

® Weaker than Hoare (exactly one wakes up, immediately takes
over monitor)

® But notify gives strong perf - exactly one wakens

Design space

® Multi-tasking models: Who runs when?
® Preemptive
® Cooperative
® |mplementation: where do threads exist?
e Kernel
® Userlevel

® Tradeoffs: Single-proc performance, efficiency,
thread switch time, really non-blocking-ness,
multiprocessor capable, processor details (affinity,
IPls, etc.)

Method

Instrumented runtime to collect data

® Good: Very powerful; lots of data from real code
® Potential bad: Affects system behavior?
Recorded

® #threads

® |ifetime

® run-length distribution

® |ock/wait rates

Workload:

® ‘“representative” benchmarks: compile, format, view

Thread Types

Eternal, Worker, Transient

Eternal:
® “Managers” wait on external events & trigger workers

® Execution mostly short: < 5ms; but ~45ms dominate
cycle use

® Goal: Minimize latency to event processing
® e.g,to provide good iterative perf

® Workers: forked to handle job or wait on job
notification
® Cedar: 35-40 (-120 in real use); GVX: 22

Transient threads

To handle specific task

(Note: Some workers may be eternal; some may be
transient. Not entirely orthogonal definition.)

® Transients ran briefly
How does this compare?

My mac has 223 threads running w/Keynote/etc, 93
processes. Apps have 4-20 threads. Daemons 20+

Their sys: 41 in benchmarks; 2-3x this in “real use”

® Not too far off...

Synchronization

® Monitors: Protect specific bit of code (or specific
data structure)
® Kind of like “java synchronized”
® Heavy use as mutexes on shared data
® < 0.4% contention. (Remember: single proc!)

® Waits mostly timeout (sleepers, polling, blinking, $ mgmt)
® Cond vars: wait for specific condition (more abstract
notion - programmer can define)
® Not surprisingly: more monitors than CVs
® Example monitor: protect data structure in shared lib
® Example CV: checking for items in a work queue
® Cedar uses 5-10x synchronization

Impl notes on synch

® Note that underlying operations must be atomic

® Depends on single vs. multi-proc; memory ordering
semantics; cache sharing semantics; etc.

® Processors provide primitives such as atomic test/set to
use to implement

Scheduling

e Nice tidbit:

® “Most execution intervals are short; longer execution
intervals account for most of the total execution time in
our systems”

® This trend shows up often (most web objects are small;
large objects account for most data volume)

® Helps for scheduling -- still a modern area
® e.g,old BSD priority: | / recent CPU use

® BSD ULE: “interactivity score” (time run vs. time
voluntarily slept)

® Can often provide both good interactive performance and
efficient resource use. Schedule interactive stuff first.

Thread use

® Birrell91 (intro to programming w/threads)
® Exploit concurrency w/multiple CPUs

® Processor sharing to make progress on multiple tasks

® Network clients, multiple humans, etc.
® Defer low-priority work while busy
® Hauser93: more patterns

® Defer work, pumps, slac procs, sleepers & |-shots,
deadlock avoidance, task rejuy, serializers, concurrency
exploiters, encapsulated forks

® Tradeoff: forking takes cycles & mem => programming
ease and parallelism

Defer work

® Get output back to user sooner (most important)
® Email send, document print, window update, etc.
® Enduring importance: ensure user interactivity!

® Most common use of forking in Cedar

® Delay until less busy time
® Priority of forked thread determines delay

® Really, same thing: do important work first...

Pipelines, pumps, & slack

® Pipelines of multiple threads
® Birrell91 intended pipelines for multiple CPUs

® Amusingly, that era is just starting now

® Software will take a while to catch up

® (But look at # threads in CPU-heavy Apple programs...)
® Hauser93 saw programmer convenience

® “Pumps” as components of a pipeline

® e.g,input filters

® analog: cat foo | grep -v bar | gzip > foo.txt.gz

Slack procs: batching

® Coalesce work
® Deliberately add latency
® Batch for greater efficiency
® Complex: Bound added latency w/efficiency...

® Excess switches to higher-priority slack
® YieldButNotToMe
® Batching effect limited/forced by length of quanta

® Could easily be too much or too little

Sleepers & Oneshots

® Sleepers “time” system behavior
® Blink cursor in M ms, test input in T secs
® Service work batched by a slack proc (polling)
® Garbage collection, file state change callbacks, etc.
® Sleepers that exit: one-shots

® Test that a condition persists long enough to be real (double
click example)

® Errors: programming by “time”
® Timeout values often wrong (how long to wait)
® Machine quanta forces min. resolution

® Mistakes create bad performance & response time (hard to
debug...)

Deadlock Avoiders

® Best example: A lock hierarchy
® Must hold locks A, B, and C to do operation
® Grab locks A & B. Do some work. Then want C to do
the rest.
® Complex to keep all in mind and ensure no deadlocks

® Must know all held locks at some call depth, release exactly
the right set

® This is a programming nightmare; source of many bugs
e Simplify w/deadlock avoider:

® Fork new thread that directly goes for A, B,and C

® Unroll main proc all the way (release all locks)

Task Rejuvenation

® “Crash and Reboot” error handling
® Today: “microreboot”; like a database abort and retry

® May be a crash response, or could even do it preemptively
as a “system cleaning” technique. :)

® Ask for fresh start, exit confused code

® But this raises serious design/religious issue...

Failure masking vs. fixing

® Robustness techniques can mask bugs (or make
possible to blithely ignore)
® These become performance problems
® And perhaps lurking correctness problems -- there’s buggy

code running!

® What's more important?

® Pushing the idea hard: failure-oblivious code

Access invalid memory? Feed program junk data

... it often keeps on running.

... it often keeps on running correctly. Freakish, no?

Correctness, bug identification, or robustness! No clear
answer - depends a lot on system.

Consider goals of a busy web server

Serializeers & Encap. forks

® Serializers

® Single thread processing events from queue; queue filled
by multiple threads.

® This abstraction can really help simplify system
® Allows the components to safely operate asynchronously
® Stronger modularity between components

® Encapsulated forks
® Library code that can be run sync or async

® e.g,callbacks have code not understood by routine calling
them, so explicitly indicate sync/async

® Protect the server’s thread of control

What use threads!?

Most common: defer work
Sleepers (incl. queue watchers, timeouts, etc)
General pumps

Deadlock avoidance in Cedar

Priorities

® Hard to program!

® Priority inversion is common

High prio thread waits on resource X

Low prio thread holds lock on resource X, but

Low prio thread can’t run b/c of med prio thread CPU hog
mars pathfinder...

Suggest: trickling CPU to threads (breaking strict prio)
® e.g. proportional fair share by prio
® Again, a system robustness trade-off
® Masking incorrect behavior!
® Results in delays until locker thread eventually gets some CPU

Running out of Resources

® Mostly unrelated to threads.:)
® But very hard to deal with!
® Memory failures are a pain.
® Even in modern systems!
® Many, many routines implicitly allocate memory

® Forces programmers to really plan mem usage

Threads & Closures

® Closure: data structure holding all state needed to
complete some work

® .. buffer control block & I/O completion

® |nterrupt forks a “soft” interrupt handler w/pointer to
buffer. Worker finishes I/O handling & wakes reader

® Worker gets prior state from buffer header.

® Threads use stack state
® |OOKB in this paper. (Large - 32MB-64MB in $$ sys!)
® Closures use “only enough” memory; more flexible

® Threads visible to OS and debugger, often conceptually
easier (debugging a closure-based system can hurt.)

® Ex: 1000s of concurrent conns in web server

About this paper

® The good:
® | oads of significant data; rare experience/introspection

® Not enough empirical work in CS. Hard to evaluate
abstractions, particularly programming abstractions.

® And papers w/this much real data are very rare
® Hmm:

® Not much comparison. Are these abstractions useful?
Correct! The best? Why? Inter-system (Cedar/VVX)
comparison?

® Reader has to interpret most of the data.
® This wasn’t a “see, my idea wins” paper

® What'’s good/bad/surprising in the #s?

