
Hive: Fault Containment for Shared-Memory Multiprocessors

John Chapin, Mendel Rosenblum, Scott Devine,

Tirthankar Lahiri, Dan Teodosiu, and Anoop Gupta

Computer Systems Laboratory

Stanford University, Stanford CA 94305

htkp: //www-flash. skanforcl. edu

Abstract

Reliability and scalability are major concerns when designing
operating systems for large-scale shared-memory multiprocessors.

In this paper we describe Hive, an operating system with a novel
kernel architecture that addresses these issues Hive is structured

as an internal distributed system of independent kernels called

cells. This improves reliabihty because a hardwme or software

fault damages only one cell rather than the whole system, and

improves scalability because few kernel resources are shared by

processes running on different cells. The Hive prototype is a
complete implementation of UNIX SVR4 and is targeted to run on

the Stanford FLASH multiprocessor.

This paper focuses on Hive’s solutlon to the following key
challenges: (1) fault containment, i.e. confining the effects of
hardware or software faults to the cell where they occur, and (2)

memory sharing among cells, which is requmed to achieve

application performance competitive with other multiprocessor
operating systems. Fault containment in a shared-memory

multiprocessor requmes defending each cell against erroneous
writes caused by faults in other cells. Hive prevents such damage

by using the FLASH jirewzdl, a write permission bit-vector

associated with each page of memory, and by discarding
potentially corrupt pages when a fault is detected. Memory sharing
is provided through a unified file and virtual memory page cache

across the cells, and through a umfied free page frame pool.

We report early experience with the system, including the
results of fault injection and performance experiments using

SimOS, an accurate simulator of FLASH, The effects of faults
were contained to the cell in which they occurred m all 49 tests
where we injected fail-stop hardware faults, and in all 20 tests

where we injected kernel data corruption. The Hive prototype

executes test workloads on a four-processor four-cell system with
between 0’%.and 11YOslowdown as compared to SGI IRIX 5.2 (the

version of UNIX on which it is based).

1 Introduction

Shared-memory multiprocessors are becoming an increasingly
common server platform because of their excellent performance

under dynamic multlprogrammed workloads, However, the
symmetric multiprocessor operating systems (SMP OS)
commonly used for small-scale machines are difficult to scale to

the large shared-memory multiprocessors that can now be built
(Stanford DASH [11], MIT Alewife [3], Convex Exemplar [5]).

Permission to make digitalrhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notic8, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To oopy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGOPS ’95 12/95 CO, USA
0 1995 ACM 0-89791 -715-419510012 ...$3.50

In this paper we describe Hive, an operahng system designed
for large-scale shared-memory multiprocessors. Hive is

fundamentally different from previous monolithic and microkernel

SMP OS implementations: it IS structured as an internal distributed
system of independent kernels called ce/ls. This multicellular
kernel architecture has two main advantages:

●

●

Re[mbiltry: In SMP OS implementations, any significant

hardware or software fault causes the entire system to crash.

For large-scale machines this can result in an unacceptably low

mean time to failure. In Hive, only the cell where the fault

occurred crashes, so only the processes using the resources of

that cell are affected. This is especially beneficial for compute
server workloads where there are multiple independent

processes. the predominant situation today. In addition,
scheduled hardware maintenance and kernel software upgrades

can proceed transparently to applications, one cell at a time.

Scdabi/i@: SMP OS implementations are difficult to scale to
large ma~hines because ;11 processors directly share all kernel

resources. Improving parallelism in a ‘<shared-everything”
architecture 1s an iterative trial-and-error process of identifying

and fixing bottlenecks. In contrast, Hive offers a systematic

approach to scalablhty. Few kernel resources are shared by

processes running on different cells, so parallelism can be

Improved by increasing the number of cells.

However, the multicellular architecture of Hive also creates new

implementation challenges. These include:

● Fault comirrrrwrr,’ The effects of faults must be confined to the

cell in which they occur, This M difficult since a shared-memory
multiprocessor allows a faulty cell to issue wild writes which
can corrupt the memory of other cells.

● Resource sharing: Processors, memory, and other system
resources must be shared flexibly across cell boundaries, to

preserve the execution efficiency that justifies investing in a

shared-memory multiprocessor.

● Smg/e-sy.s tent image.. The cells must cooperate to present a

standard SMP OS interface to applications and users.

In this paper, we focus on Hive’s solution to the fault containment

problem and on Its solution to a key resource sharing problem,
sharing memory across cell boundaries, The solutions rely on
hardware as well as software mechamsms: we have designed Hive

in conjunction with the Stanford FLASH multiprocessor [10],
which has enabled us to add hardware support m a few critical
areas.

Hive’s fault containment strategy has three mam components.
Each cell uses firewrll hardware rxovided by FLASH to defend
most of its memory pages against ;ild writes. Any pages writable
by a failed cell are preemptively discarded when the failure is

detected, which prevents any corrupt data from being read
subsequently by applications or written to disk. Finally, aggressive
fadure detection reduces the delay until preemptive discard occurs.
Cell failures are detected initially using heuristic checks, then

12

confirmed with a distributed agreement protocol that minimizes

the probability of concluding that a functioning cell has failed.

Hive prowdes two types of memory sharing among cells. First,

the file system and the virtual memory system cooperate so
processes on multiple cells can use the same memory page for

shared data. Second, the page allocation modules on different cells
cooperate so a free page belonging to one cell can be loaned to

another cell that is under memory pressure. Either type of sharing

would cause fault containment problems on current

multiprocessors, since a hardware fault in memory or in a

processor caching the data could halt some other processor that

tries to access that memory FLASH makes memory sharing safe

by providing timeouts and checks on memory accesses.

The current prototype of Hive is based on and remains binary

compatible with IRIX 5.2 (a version of UNIX SVR4 from Silicon

Graphics, Inc.). Because FLASH is not available yet, we used the
SlmOS hardware simulator [18] to develop and test Hive. Our

early experiments using SimOS demonstrate that:

Hive can survive the halt of a processor or the failure of a range

of memory. In all of 49 experiments where we injected a fail-

stop hardware fault, the effects were confined to the cell where
the fault occurred.

Hive can surwve kernel software faults. In all of 20

experiments where we randomly corrupted internal operating

system data structures, the effects were confined to the cell

where the fault occurred.

Hive can offer reasonable performance while providing fault
containment. A four-cell Hive executed three test workloads
with between 0% and 1170 slowdown as compared to IRIX 5.2

on a four-processor machine.

These results indicate that a multicellular kernel architecture can

provide fault containment in a shared-memory multiprocessor. The

performance results are also promising, but significant further

work is required on resource sharing and the single-system image

before we can make definitive conclusions about performance.

We begin this paper by defining fault containment more

precisely and describing the fundamental problems that arise when
implementing it in multiprocessors, Next we give an overview of

the architecture and implementation of Hive. The implementation

details follow in three parts: fault containment, memory sharing,
and the intercell remote procedure call subsystem. We conclude
with an evaluation of the performance and fault containment of the

current prototype, a discussion of other applications of the Hive

architecture, and a summary of related work.

2 Fault Containment in
Shared-Memory Multiprocessors

Fault containment is a general reliabdity strategy that has been
implemented in many distributed systems. It differs from fault

tolerance in that partial failures are allowed, which enables the
system to avoid the cost of replicating processes and data.

Fault containment is an attractive reliability strategy for

multiprocessors used as general-purpose compute servers. The
workloads characteristic of this envu-onment frequently contain
multiple independent processes, so some processes can continue

doing useful work even if others are terminated by a partial system
fadure.

However, fault containment in a multiprocessor will only have
reliability benefits if the operating system manages resources well.
Few applications will survive a partial system failure if the

operating system allocates resources randomly from all over the
machine. Since application reliability is the primary goal, we

redefine fault containment to include this resource management

requirement:

A system provides fcadtcontainment f the probability thut

an application falls is proportional to the amount of

resources used by that application. not to the total amount

of resources in the system.

One important consequence of choosing this as the reliability goal

is that large applications which use resources from the whole

system receive no reliability benefits. For example, some compute

server workloads contain parallel applications that run with as

many threads as there are processors in the system. However, these
large applications have previously used checkpointing to provide

their own reliability, so we assume they can continue to do so.

The fault containment strategy can be used in both distributed

systems and multiprocessors. However, the problems that arise in

implementing fault containment are different in the two
environments. In addition to all the problems that arise in

distributed systems, the shared-memory hardware of
multiprocessors increases vulnerability to both hardware faults and

software faults. We describe the problems caused by each of these
in turn.

Hardware faults: Consider the architecture of the Stanford

FLASH, which is a typical large-scale shared-memory

multiprocessor (Figure 2.1). FLASH consists of multiple nodes,

each with a processor and its caches, a local portion of main
memory, and local 1/0 devices. The nodes commumcate through a
high-speed low-latency mesh network. Cache coherence is

provided by a coherence controller on each node. A machine like

this M called a CC-NUMA multiprocessor (cache-coherent with
non-uniform memory access time) since accesses to local memory

are faster than accesses to the memory of other nodes.

In a CC-NUMA machine, an important unit of failure is the

node, A node failure halts a processor and has two direct effects on

the memory of the machine: the portion of main memory assigned
to that node becomes inaccessible, and any memory line whose

only copy was cached on that node is lost. There may also be
indmect effects that cause loss of other data.

For the operating system to survive and recover from hardware
faults. the hardware must make several guarantees about the

behavior of shared memory after a fault. Accesses to unaffected

memory ranges must continue to be satisfied with normal cache
coherence. Processors that try to access faded memory or retrieve

a cache line from a failed node must not be stalled indefinitely.

Also, the set of memory lines that could be affected by a fault on a

given node must be limlted somehow, since des~gning recovery
algorithms requires knowing what data can be trusted to be correct.

These hardware properties collectively make up a memory fault

model, analogous to the memory consistency model of a

multiprocessor which specifies the behavior of reads and writes.

The FLASH memory fault model was developed to match the

needs of Hive: it provides the above properties, guarantees that the
network remains fully connected with high probability (i.e. the

operating system need not work around network partitions), and
specifies that only the nodes that have been authorized to write a
given memory line (via the firewall) could damage that line due to

a hardware fault.

Software faults: The presence of shared memory makes each cell
vulnerable to wild writes resulting from software faults in other
cells. Wild writes are not a negligible problem. Studies have

shown that software faults are more common than hardware faults
m current systems [7]. When a software fault occurs, a wild write
can easily follow. One study found that among 3000 severe bugs
reported in IBM operating systems over a five-year period,

between 15 and 25 percent caused wild writes [20].

13

..

/

<

\

alMemory Processor

I I

*

>

FIGURE 2.1. FLASH architecture.

The machine is structured as a set of nodes in a mesh network,

Each node contains a portion of the main memory and a coherence
controller which communicates with other nodes to maintain cache

coherence. When a hardware fault occurs. the node is a likely unit

of failure, so ~ortions of main memory can be lost.

Unfortunately. existing shared-memory multiprocessors do not
prowde a mechanism to prevent wild writes. The only mechamsm

that can halt a write request is the virtual address translation

hardware present in each processor, which is under the control of

the very software whose faults must be protected against.

Therefore an operating system designed to prevent wild writes
must either use special-purpose hardware, or rely on a trusted

software base that takes control of the existing virtual address
translation hardware. For systems which use hardware support, the

most natural place to put lt is in the coherence controller, which

can check permissions attached to each memory block before
modifying memory, Systems following a software-only approach

could use a microkernel as the trusted base, or could use the lower

levels of the operating system’s own virtual memory system, on
top of which most of the kernel would run in a virtual address

space.

The hardware and software-only approaches provide

sigmticantly different levels of reliability, at least for an operating

system that is partitioned into cells. In the hardware approach,
each cell’s wild write defense depends only on the hardware and

software of that cel 1. In the software-only approach, each cell’s
wild write defense depends on the hardware and trusted software

layer of all other cells. By reducing the number and complexity of
the components that must function correctly to defend each cell
against wild writes, the hardware approach provides higher
reliability than the software-only approach.

We chose to add firewall hardware, a write permission bit-
vector associated with each page of memory, to the FLASH
coherence controller. We found that the firewall added little to the

cost of FLASH beyond the storage required for the bit vectors.
Other large multiprocessors are likely to be similar in this respect,
because the hardware required for access permission checking is

close to that required for directory-based cache-coherence. The
firewall and its performance impact are described in Section 4.2.

3 Hive Architecture

Hive 1s structured as a set of cells (Figure 3,1). When the system
boots, each cell is assigned a range of nodes that it owns

throughout execution. Each cell manages the processors, memory,
and 1/0 devices on those nodes as if it were an independent

Cell 2 Cell 3 3

l.:

t

Increasing physical
addresses

l__:l ! ._! I.-1 I.-J

:!]JIII1 2
I.-J _.1 I__l ,,

EEl ~

Paged

.:i. H.Hl memory

1 ,,,,

!,!l..jllll , ,,
OS internal,’

,’

Cell O Cell 1
data

Ce]]o-kiwfd%~tor
(a) Physical view (b) Memory layout

FIGURE 3.1. Partition of a multiprocessor into Hive cells,

Each cell controls a portion of the global physical address space

and runs as an independent multiprocessor kernel.

operating system. The cells cooperate to present the required
single-system image to user-level processes.

On top of this structure, the architectural features of Hive fall

into two broad categories: those related to implementing fault

containment, and those related to providing resource sharing
despite the fault containment boundaries between cells. After

describing both parts of the architecture, we will briefly summarize

the implementation status of tbe Hive prototype.

3.1 Fault containment architecture

Fault containment at the hardware level is a hardware design

problem, with requirements specified by the memory fault model
that Hive relies on. At the operating system level, there are three
channels by which a fault in one cell can damage another cell: by

sending a bad message, providing bad data or errors to remote

reads, or by causing erroneous remote writes. A cell failure can
also deny access to some important resource (such as a common

shared library). but that is a different problem which is a subject

for further work, We discuss each of the three operating system

fault containment problems m turn.

Message exchange: Most communication between cells is done
through remote procedure calls (RPCS). Each cell sanity-checks all
information received from other cells and sets timeouts whenever

waiting for a reply. Experience with previous distributed systems
shows that this approach provides excellent fault containment,
even though it does not defend against all possible faults.

Remote reads: Cells also read each other’s internal data structures

dwectly, which can be substantially faster than exchanging RPCS.
It is the reading cell’s responslbdlty to defend itself against
deadlocking or crashing despite such problems as invalid pointers,

linked data structures that contain infinite loops, or data values that
change in the middle of an operation. This is implemented with a
simple careful reference protocol that includes checks for the
various possible error conditions. Once the data has been safely

read. it 1s sanity-checked just as message data is checked.

Remote writes; Cells never write to each other’s internal data

structures directly, as this would make fault containment
Impractical. This M enforced by using the FLASH firewall to
protect kernel code and data against remote writes. However, cells
frequently write to each other’s user-level pages since pages can be

14

shared by processes running on different cells. This creates two

issues that must be addressed:

Q Choosing which pages to protect: Each cell always protects the

user-level pages that are only used by processes local to that

cell. This ensures maximum reliability for most small processes

in the system, Each cell also protects as many of the shared

pages as possible without causing an excessive number of
protection status changes. Protection changes can be expensive:

when using the FLASH tirewall, revoking remote write

permission reqmres communication with remote nodes to
ensure that all valid writes have been delivered to memory.
Thus firewall management is a tradeoff between fault

containment and performance.

● Wild writes to unprotected pages.. Wild writes to user pages are

a problem because they violate the data integrity expected by

users. The chance of data integrity violations must be reduced
to near that provided by the memory of the machine, or Hive
will not be usable for any important applications.

Hive attempts to mask corrupt data by preventing corrupted

pages from being read by applications or written to disk.
However, by the time a cell failure is detected, it is too late to

determine which pages have been corrupted. Hive makes the

pessimistic assumption that all potentially damaged pages have

been corrupted. When a cell failure is detected, all pages
writable by the failed cell are preemptively discarded.

Unfortunately, the preemptive discard policy can not prevent all

user-visible data integrity violations caused by wild writes.
Corrupt data might be used before the cell failure is detected.

Alternatively, a faulty cell might corrupt a page, then give up its

write permission before the failure is detected, so the page will not
be discarded.

This problem appears to be fundamental to a multicellular

kernel architecture. The only way to prevent all data integrity

violations (without excessive hardware overhead to log updates) is
to avoid write-sharing user pages across cell boundaries. Giving up

write-shared pages would give up one of the main performance

advantages of a shared-memory multiprocessor,
It is unclear at present whether the probability of data integrity

violations will be higher in a multicellular system than in a current

SMP OS implementation. We intend to evaluate this in future
studies. One way to reduce the probability is to shorten the time
window within which corrupt data might be used, by detecting

failures quickly.

Failure detection is a well-studied problem in the context of

distributed systems. For Hive. there are two main issues, Although

a halted cell is easily recognizable, a cell that is alive but acting
erratically can be difficult to distinguish from one that is

functioning correctly. Additionally, if one cell could declare that

another had failed and cause it to be rebooted, a faulty cell which

mistakenly concluded that other cells were corrupt could destroy a
large fraction of the system.

Hive uses a two-part solution. First, cells momtor each other
during normal operation with a number of heuristic checks. A
failed check provides a hint triggers recovery immediately.

Second, consensus among the surviving cells is required to reboot

a failed cell. When a hint alert is broadcast. all cells temporarily
suspend processes running at user level and run a distributed

agreement algorithm. If the surviving cells agree that a cell has
failed, user processes remain suspended until the system has been
restored to a consistent state and all potentially corrupt pages have
been discarded,

This approach ensures that the window of vulnerability to wild
writes lasts only until the first check fails and the agreement
process runs (assuming the failure is correctly confirmed by the

agreement algorithm). The window of vulnerability can be reduced

by increasing the frequency of checks during normal operation.

This is another tradeoff between fault containment and

performance.

3.2 Resource sharing architecture

The challenge of resource sharing in Hive is to implement the tight

sharing expected from a multiprocessor despite the fault
containment boundaries between cells. The mechanisms for
resource sharing are implemented through the cooperation of the

various kernels, but the policy is implemented outside the kernels,

in a user-level process called Wax.

This approach is feasible because in Hive, unlike in previous

distributed systems, cells are not responsible for deciding how to
divide their resources between local and remote requests. Making

that tradeoff correctly requires a global view of the system state,

which is available only to Wax, Each cell is responsible only for
maintaining its internal correctness (for example, by preserving
enough local free memory to avoid deadlock) and for optimizing

performance within the resources it has been allocated.

Resource sharing mechanisms: The resources that need to be

shared particularly efficiently across cell boundaries are memory

and processors.

Memory sharing occurs at two levels (Figure 3.2). In logical-

level sharing. a cell that needs to use a data page from a file can

access that page no matter where it is stored in the system.
Logical-1evel sharing supports a globally-shared file buffer cache

in addition to allowing processes on different cells to share

memory. In plzysical-level sharing, a cell that has a free page frame
can transfer control over that frame to another cell. Physical-level

sharing balances memory pressure across the machine and allows

data pages to be placed where required for fast access on a CC-

NUMA machine.

To share processors efficiently, Hive extends the UNIX process

abstraction to span cell boundaries. A single parallel process can

run threads on multiple cells at the same time. Such processes are

called spanning tasks. Each cell runs a separate local process
containing the threads that are local to that cell. Shared process
state such as the address space map is kept consistent among the

component processes of the spanning task. This mechanism also
supports migration of sequential processes among cells for load
balancing.

Resource sharing policy: Intercell resource allocation decisions

are centralized in Wax, a multithreaded user-level process

(Figure 3.3). Table 3.4 lists some of the allocation decmions made

by Wax.

Wax addresses a problem faced by previous distributed

systems, which were limited to two unattractive resource
management strategies. Resource management can be distributed,

in which case each kernel has to make decisions based on an
incomplete view of the global state. Alternatively. it can be
centralized, in which case the kernel running the policy module

can become a performance bottleneck, and the policy module has
difficulty responding to rapid changes m the system.

Wax takes advantage of shared memory and the support for

spanning tasks to provide efficient resource management. Wax has

a complete, up-to-date wew of the system state but is not limited to
running on a single cell. The threads of Wax running on different

cells can synchronize with each other using standard locks and

nonblocking data structures, enabling efticient resource

management decisions.
Despite its special privileges, Wax is not a special kind of

process. It uses resources from all cells, so its pages are discarded
and it exits whenever any cell fads. The recovery process starts a
new incarnation of Wax which forks to all cells and rebuilds its
picture of the system stme from scratch. This avoids the

15

❑ QO, El
.!,J

❑ ❑ ❑ju.,

(b) Physical-level sharing of page frames

FIGURE 3.2. Types of memory sharing.
In logical-level sharing, a process on one cell maps a data page
from another cell into its address space. In physical-level sharing,

one cell transfers control over a page frame to another. One page
might be shared in both ways at the same time.

considerable complexity of trying to recover consistency of Wax’s

internal data structures after they are damaged by a cell failure.

Wax does not weaken the fault containment boundaries

between cells. Each cell protects itself by sanity-checking the
inputs it receives from Wax. Also, operations required for system

correctness are handled directly through RPCS rather than
delegated to Wax. Thus if Wax is damaged by a faulty cell it can
hurt system performance but not correctness.

3.3 Implementation status

We have focused development so far on fault containment and
memory sharing. Most of the fault containment features of the

architecture are implemented and functioning: the internal

distributed system, careful reference protocol, wild write defense,
and failure hints and recovery. Memory sharing among cells is
implemented at both logical-level and physical-level. We have also

developed a low-latency intercell RPC subsystem.

The single-system image is only partially complete at present. It
provides forks across cell boundaries, distributed process groups
and signal delivery, and a shared file system name space. Spanning
tasks, Wax, the distributed agreement protocol, and a fault-tolerant
file system with single-system semantics remain to be

implemented.

The current prototype is sufficient to demonstrate that fault

containment is possible in a shared-memory multiprocessor, and
that memory sharing can function efficiently without weakening

fault containment. Performance results from the current prototype
are promising, but further work is required to determine whether a

/wax
A \ A \

State Hints
I

State Hints

m

M
m

Cell O 9 Cell 1
s

k!

FIGURE 3.3. Intercell optimization using a user-level process.
Wax reads state from all cells. Wax provides hints that control the

resource management policies that require a global view of the

system state. Since Wax is a user-level process, the threads in Wax
can use shared memory and synchronize freely without weakening
the fault isolation of the cells.

Module Policy

Page allocator Which cells to allocate memory from

IVirtual memory IWhich cells should be targeted for page

clock hand deallocation I
~

Scheduler IGang scheduling, space sharing (granting a
set of processors exclusively to a process) I

I Swapper I Which processes to swap I

TABLE 3.4. Examples of policies in each cell driven by Wax.

fully-implemented system will perform as well as previous UNIX

kernels.

The performance measurements reported in the following

sections were obtained using SimOS [18]. We model a machine

similar in performance to an SGI Challenge multiprocessor with
four 200-MHz MIPS R4000 processors and a 700 nanosecond

main memory access latency. We use two types of workloads,

characteristic of the two environments we expect to be most
common for Hive. For compute-server usage, we use prwrke

(parallel compilation). To model use by large parallel applications,
we use ocean (scientific simulation) and raytrace (graphics

rendering). Section 7 describes SimOS, the machine model, and

the workloads in detail.

4 Fault Containment Implementation

As described earlier, the three ways one cell can damage another
are by sending bad messages, providing bad data to remote reads,
and writing to remote addresses. The mechanisms that Hive uses to
prevent damage from spreading through messages have proven
their effectiveness in previous distributed systems such as NFS.
Therefore, we will focus on the novel mechanisms related to
remote reads and writes: the careful reference protocol for remote

reads, the wild write defense, and aggressive failure detection,

4.1 Careful reference protocol

One cell reads another’s internal data structures in cases where
RPCS are too slow, an up-to-date view of the data is required, or

,

16

the data needs to be published to a large number of cells. Once the

data has been read, it has to be sanity-checked just as an RPC
received from the remote cell would be checked. However, the

remote reads create additional fault containment problems.

An access to the memory of a remote cell can result in a

hardware exception. For example, a bus error will occur if the

remote node has failed. Cells normally panic (shut themselves
down) if they detect such hardware exceptions during kernel

execution, because this indicates internal kernel corruption. Some
mechanism is needed to prevent errors that occur during remote
reads from causing a kernel panic.

Hive uses a simple careful reference protocol to avoid these

problems, as well as to handle data errors such as linked data

structures with loops and values that change unexpectedly. The

reading cell follows these steps:

1.

2.

3.

4.

5.

Call the ca’reful_on function, which captures the current
stack frame and records which remote cell the kernel intends to

access. If a bus error occurs while reading the memory of that
cell, the trap handler restores to the saved function context.

Before using any remote address, check that it is aligned
properly for the expected data structure and that it addresses the

memory range belonging to the expected cell.

Copy all data values to local memory before beginning sanity-
checks, in order to defend against unexpected changes.

Check each remote data structure by reading a structure type

identifier. The type identifier is written by the memory allocator

and removed by the memory deallocator. Checking for tbe

expected value of this tag provides a first line of defense against

invalid remote pointers.

Call care ful_of f when done so future bus errors in the
reading cell will correctly cause the kernel to panic.

An example use of the careful reference protocol is the clock

monitoring algorithm, in which the clock handler of each cell

checks another cell’s clock value on every tick (Section 4.3). With
simulated 200-MHz processors, the average latency from the

initial call to care f ul_on until the terminating caref ul_o f f

call finishes is 1.16 ps (232 cycles). of which 0.7 KS (140 cycles) is

the latency we model for the cache miss to the memory line

containing the clock value. This is substantially faster than sending

an RPC to get the data, which takes a minimum of 7.2 us

(Section 6) and requires interrupting a processor on the remote

cell.

4.2 Wild write defense

Hive defends against wild writes using a two-part strategy. First, it
manages the FLASH hardware firewall to minimize the number of

pages writable by remote cells. Second, when a cell failure is

detected, other cells preemptively discard any pages writable by
the failed cell.

FLASH firewall: The firewall controls which processors are

allowed to modify each region of main memory. FLASH provides
a separate firewall for each 4 KB of memory, specified as a 64-bit
vector where each bit grants write permission to a processor. On
systems larger than 64 processors, each bit grants write permission
to multiple processors. A write request to a page for which the

corresponding bit is not set fails with a bus error. Only the local
processor can change the firewall bits for the memory of its node.

Tbe coherence controller of each node stores and checks the
firewall bits for the memory of that node. It checks the firewall on

each request for cache line ownership (read misses do not count as
ownership requests) and on most cache line writebacks. Uncached

accesses to 1/0 devices on other cells always receive bus errors,

while DMA writes from 1/0 devices are checked as if they were

writes from the processor on that node.

We chose a 4 KB firewall granularity to match the operating

system page size. Anything larger would constrain operating

system memory allocation, whereas it is unclear whether a finer

granularity would be useful.

We chose a bit vector per page after rejecting two options that
would require less storage. A single bit per page, granting global

write access, would provide no fault containment for processes

that use any remote memory. A byte or halfword per page, naming
a processor with write access, would prevent the scheduler m each

cell from balancing the load on its processors.

The performance cost of the firewall is minimal. We ran several

of the test workloads twice using a cycle-accurate FLASH
memory system model, once with firewall checking enabled and

once with it disabled. The firewall check increases the average
remote write cache miss latency under pmake by 6.3% and under

ocecm by 4.4’%. This increase has little overall effect since write
cache misses are a small fraction of the workload run time.

FirewaU management policy: Firewall management is a tradeoff
between fault containment and performance. The only time remote

write access to a page is required is when a write-enabled mapping

to the page is present in a processor of another cell. However, the

set of active hardware mappings changes on each TLB miss, a rate
that is far too high to send RPCS requesting firewall status changes.

Some other policy is needed to decide when ftrewall write
permission should be granted.

Choosing the correct policy requires careful evaluation under

various workloads. At present we use a policy that was

straightforward to implement and keeps the number of writable
pages fairly small.

Write access to a page is granted to all processors of a cell as a

group, when any process on that cell faults the page into a writable
portion of its address space. Granting access to all processors of

the cell allows it to freely reschedule the process on any of its
processors without sending RPCS to remote cells. Write

permission remains granted as long as any process on that cell has

the page mapped.

The address space region is marked writable only if the process

had explicitly requested a writable mapping to the file. Thus this

policy ensures that a fault m a cell can only corrupt remote pages
to which a process running on that cell had requested write access.

To measure the effectiveness of this policy we used pmake,

which shares few writable pages between the separate compile

processes, and ocean, which shares its data segment among all its
threads. We observed that, over 5.0 seconds of execution sampled
at 20 millisecond intervals, ptnake had an average of 15 remotely

writable pages per cell at each sample (out of about 6000 user

pages per cell). while ocww showed an average of 550 remotely
writable pages.

The behavior of the firewall under pnurke shows that the current

policy should provide good wild write protection to a system used
predominately by sequential applications. The highest recorded

number of writable pages during tbe workload was 42. on the cell
acting as the file server for the directory where compiler
intermediate files are stored (/ tmp).

In tbe case of ocean, the current policy provides little protection

since the global data segment is write-shared by all processors.

However, the application is runmng on all processors and will exit
anyway when a cell fails, so any e~forts to prevent ns pages from
being discarded will be wasted. The simple firewall management

policy appears to be working well in this case, avoiding protection

status changes that would create unnecessary performance
overheads.

17

Preemptive discard: It M difficult to efficiently determine which

pages to discard after a cell failure. Many cells could be using a
given page and therefore need to cooperate in discarding it, but

only one cell knows the precise firewall status of that page (the

data home cell, defined m SectIon 5). Dmtributing ftrewall status

reformation during recovery to all cells using the page would

require significant communication. Instead, all TLBs are flushed

and all remote mappings are removed during recovery. This

ensures that a future access to a discarded page will fault and send
an RPC to the owner of the page, where it can be checked.

The accesses need to be checked because discarding a page can
violate the expected stable write semantics of the tile system, if the

page was dirty with respect to disk Processes that attempt to
access a discarded dirty page should receive an error. However, the
accesses might occur arbltrardy far in the future, making it quite

expensive to record exactly which pages of each file have been

dmcarded. We solve this problem by relaxing the process-visible

error semantics slightly.

In most current UNIX implementations the file system does not

attempt to record which dirty pages were lost in a system crash. It

simply fetches stale data from disk after a reboot. This is
acceptable because no local processes can survive the crash, so a

process that accessed the dirty data will never observe that it was

unstable,

We take advantage of this in Hive and allow any process that
opens a damaged file after a cell failure to read whatever data is
available on disk. Only processes that opened the file before the
fiailure will receive 1/0 errors. This M implemented with a

generation number. maintained by the file system, that is copied
into the file descriptor or address space map of a process when it

opens the file. When a dirty page of a file is discarded. the file’s

generation number is incremented. An access via a file descriptor

or address space region with a mismatched generation number
generates an error.

4.3 Failure detection and recovery

Hive attempts to detect the failure of a cell quickly in order to
reduce the probability that wild writes will cause user-wsible data

corruption. This is implemented with consistency checks that run
regularly in normal operation. When one of the checks fails, it is

confirmed by a distributed agreement algorithm.

Just as in prewous distributed systems. a cell ES considered

potentially failed if an RPC sent to it times out. Additionally. a cell
is considered potentially failed if

● An attempt to access its memory causes a bus error. This will

occur if there is a serious hardware failure.

● A shared memory location which it updates on every clock
interrupt fails to increment. Clock momtoring detects hardware
fadures that halt processors but not entire nodes, as well as
operating system errors that lead to deadlocks or the inability to
respond to interrupts.

* Data or pointers read from its memory fail the consistency
checks that are part of the careful reference protocol. This
detects software faults.

To prevent a corrupt cell from repeatedly broadcasting alerts and

damaging system performance over a long period, a cell that
broadcasts the same alert twice but is voted down by the
distributed agreement algorithm both times 1s considered corrupt
by the other cells.

The distributed agreement algorithm is an instance of the well-
studied group membership problem, so Hive wdl use a standard

algorlthm (probably [16]). This M not implemented yet and is
simulated by an oracle for the experiments reported in this paper.

Recovery algorithms: Given consensus on the live set of cells,

each cell runs recovery algorithms to clean up dangling references
and determine which processes must be killed. One interesting

aspect of these algorithms is the use of a double global barrier to

synchronize the preemptive discard operation. The double barrier

m recovery is part of a strategy to increase the speed of page faults

that hit in the file cache, an extremely common intercell operation.

When a cell exits distributed agreement and enters recovery, it

is not guaranteed that all page faults and accesses to its memory

from other cells have finished. User-level processes will be

suspended, but processes running at kernel level will not be

suspended. (Allowing kernel-level processes to continue during
recovery permits the recovery algorithms to grab kernel locks and
modify kernel data structures.) Each cell only joins the first global
barrier when it has flushed its processor TLBs and removed any

remote mappings from process address spaces. A page fault that

occurs after a cell has joined the first barrier is held up on the client

side.

After the first barrier completes, each cell knows that no further
valid page faults or remote accesses are pending. This allows lt to

revoke any firewall write permission it has granted to other cells

and clean up its virtual memory data structures. It is during this

operation that the virtual memory subsystem detects pages that

were writable by a failed cell and notifies the file system, which
increments its generation count on the tile to record the loss.

Each cell joins the second global barrier after it has finished
virtual memory cleanup. Cells that exit the second barrier can
safely resume normal operation, including sending page faults to

other cells.

Given this design, the server-side implementation of a page
fault RPC need not grab any blocking locks to synchronize with

the recovery algorithms. This allows page faults that hit in the file

cache to be serviced entirely in an interrupt handler, which has

sigmficant performance benefits (Section 5,2).

At the end of every recovery round, a recovery master is elected

from the new hve set. The recovery master runs hardware
diagnostics on the nodes belonging to the faded cells. If the

diagnostic checks succeed, the failed cells are automatically
rebooted and reintegrated into the system. Reintegration is not yet

implemented but appears straightforward.

5 Memory Sharing Implementation

Given the fault containment provided by the features described in

the previous section, the next challenge is to share resources
flexibly across cell boundaries without weakening fault

containment. This section describes Hive’s solution to one of the

major resource sharing problems, memory sharing among cells.

As described earlier (Figure 3.2) there are two types of memory
sharing: logical-level sharing and physical-level sharing. The two
types require different data structure management and are
implemented at different places m the system.

We found it useful to give names to the three roles that cells can
play in sharing a memory page:

● Cltent cell.” A cell running a process that is accessing the data.

● Memory home: The cell that owns the physical storage for the
page. Cell 1 1sthe memory home in both parts of Figure 3.2.

● Data home: The cell that owns the data stored in the page. Cell
1 M the data home in Figure 3.2a, but cell O is the data home m
Figure 3.2b.

The data home provides name resolution, manages the coherency
data structures if the page is replicated, and ensures that the page M

written back to disk if’ it becomes dirty. In the current prototype the

Logical level

P Record that a client cell M non> accessing a data page. */

export (client_cell, pfdat, is_writable)

I* Allocate an e.vtende(i pf(iat and bind to a remote page. */

import (page_address, data_home,

logical~age_id, is_writable)

/* Free extended pfdat, send RPC to data home to jkee page. */

release(pfdat)

Physical level

/* Record that a client cell now has control o~er a page, frame. *I

loan_frame (client_cell , pfdat)

/+ Allocate an extended pfdat and bind to a remote frame. +/

borrow_frame (page_address)

/“ Free extended pfdat, send free RPC to memory home. ‘/

return_frame (pfdat)

TABLE 5.1. Vh-tual memory primitives for memory sharing.

data home for a given page is always the cell that owns the backing
store for that page

We start our description of memory sharing by introducing the

virtual memory page cache design in IRIX. because it is the basis
for the implementation. Then we discuss each of the types of
memory sharing in turn.

5.1 IRIXpage cache design

In IRIX, each page frame in paged memory is managed by an entry

in a table of page frame data .strwctares (pfdats), Each pfdat

records the logical page id of the data stored m the corresponding

frame. The logical page id has two components: a tag and an

offset. The tag identifies the object to which the logical page
belongs, This can be either a tile. for file system pages, or a node in
the copy-on-write tree, for anonymous pages. The offset indicates

which logical page of the object this is. The pfdats are linked into a
hash table that allows Iookupbylogicai page id.

When a page fault to a mapped tile page occurs, the wrtual

memory system first checks the pfdat hash table. If the data page

requested by the process is not present, the virtual memory system

revokes the read operation of the vnode object provided by the tile

system to represent that tile. The file system allocates a page

frame, fills it with the requested data, and inserts it in the pfdat
hash table. Then the page fault handler in the virtual memory

system restarts and finds the page in the hash table.

Read and write system calls follow nearly the same path as page

faults. The system call dispatcher calls through the vnode object

for the file. The file system checks the pfdat hash table for the
requested page in order to decide whether 1/0 M necessary.

5.2 Logical-level sharing offilepages

[n Hive, when one cell needs to access a data page cached by

another, it allocates a new pfdat to record the logical page id and
the physical address of the page. These dynamically-allocated
pfdats are called extended pfdars. Once the extended pfdat is

allocated and inserted into the pfdat hash table, most kernel
modules can operate cm the page without being aware that it is
actually part of the memory belonging to anuthel- cell.

The Hive virtual memory system implements export and
import functions that set up the binding between a page of one
cell and an extended pfdat on another (Table 5.1). These functions
are most frequently called as part of page fault processing, which

proceeds as follows.

Total local page fault latency 6.9 ~sec

Total remote page fault latency 50.7 ~sec

Client cell 28.0
File system 9.0
Locking overhead 5.5
Miscellaneous VM 8.7
Import page 4.8

Data home 5.4
Miscellaneous VM 3.4
Export page 2.()

RPC
Stubs and RPC subsystem
Hardware message and interrupts
Arg/result copy through shared memory
Allocate/free arg and result memory

17,3
4.9
4.7
4.0
3.7

TABLE 5.2. Components oftheremoteDaze fauklatencv.

Times are averag;d across 1024 faults t;at ‘hit in the dat; home

page cache.

A page fault to a remote tile is initially processed just as m other
distributed file systems. The wrtual memory system first checks

the pfdat hash table on the client ceil. If the data page requested by

the process is not present, the virtual memory system invokes the
read operation on the vnode for that file. This is a shadow vnode
which indicates that the file is remote. The file system uses

information stored in the vnode to determine the data home for the

tile and the vnode tag on the data home. and sends an RPC to the
data home. The server side of the tile system issues a disk read

using the data home vnode if the page is not already cached.

Once the page has been located on the data home, Hive

functions differently from previous systems. The tile system on the

data home calls export on the page. This records the client cell
in the data home’s pfdat, which prevents the page from being
deallocated and provides information necessary for the failure
recovery algorithms. export also modlties the tirewall state of

the page if write access is requested.

The server-side tile system returns the address of the data page

to the client cell. The client-side file system calls import, which
allocates an extended pfdat for that page frame and inserts it mto

the client cell’s pfd~t hash table. Further faults to that page can hit

quickly in the client cell’s hash table and avoid sending an RPC to
the data home. The page also remams In the data home’s pfdat

hash table, allowing processes on other cells to find and share it.

Figure 5,3a illustrates the state of the wrtual memory data

structures after export and import have completed.

When the client cell eventually frees the page, the virtual

memory system calls release rather than putting the page on the
local free Ii\t. release frees the extended pfdat and sends an

RPC to the dtitti home, which places the page on the data home free
list if no othcrrcferences remain. Keeping the page on the data
home free hst rather than client free Ilsts increases memory
allocation flexibility for the data home. The data page remains in

memory until the page frame is reallocated, providing fast access if

the client cell faults to It again.

We measure the overhead of the entire mechanism described in

this section by comparing tbe mmlmal cost of a page fault that hits
m the client cell page cache with one that goes remote and hits in
the data home page cache. The local case averages 6.9 LISwhile the
remote case averages 50.7 VS in microbenchmarks run on SimOS.

Table 5.2 shows a detailed breakdown of the remote page fault
latency 17.3 ysofthe remote case isduetcr RPCcosts which are
explained in Section6. Another 14.2 ~s(hsted inthetabie as client

cell locking overhead and miscellaneous VM) is due tc~ m

19

❑
Extended
pfdat

❑
Regular
pfdat I Data home

pfdat
table

L

pfdat

Memory
table

L

Memory
pages pages

~

❑
✍✍✍☞ ✍✍✍☞exp Exported

pfdat
4

\

❑
Imported

/ ?

lmp pfdat
Cell 1 ~

-+

Cell 1
.—— ——— __ ___ . .—— — ——— —— ——.

R

Loaned Cel10 ‘} Cell O
pfdat \

\

❑
brw Borrowed imp —

pfdat ---+

v Vnode
~

---+
Data home

+

v :::2W +

(a) Logical-level sharing (b) Physical-1evel sharing

FIGURE 5.3. Implementation of memory sharing.

The entries in the pfdat table bind a logical page id (file, offset) to a physical page frame. In logical-level sharing (a), the data home (cell 1)
marks its pfdat as exported and records the identity of the client (cell O). The data home continues to manage the page. In physical-level
sharing (b), the memory home (cell 1) marks its pfdat as loaned to the data home (cell O) and ignores the page until the data home returns it,

implementation structure inherited from IRIX. IRIX assumes that

any miss in the client cell’s hash table will’ result in a disk access,

and so does not optimize that code path. Reorganizing this code
could provide substantial further reduction in the remote overhead.

In practice the remote costs can be somewhat higher, because

some of the remote faults cannot be serviced at interrupt level,

Faults which encounter certain synchronization conditions at the

data home must be queued for an RPC server process, which adds

substantial latency (Section 6). To check the overall effect of

remote faults, we measured their contribution to the slowdown of
pmake on a four-cell system compared to a one-cell system.
During about six seconds of execution on four processors, there

are 8935 page faults that hit in the page cache, of which 4946 are

remote on the four-cell system. This increases the time spent in
these faults from 117 to 455 milliseconds (cumulative across the

processors), which is about 13% of the overall slowdown of pmake

from a one-cell to a four-cell system. This time is worth optimizing
but is not a dominant effect on system performance.

5.3 Logical-1evel sharing of anonymous pages

The virtual memory system uses nearly the same mechanisms to
share anonymous pages (those whose backing store is in the swap
partition) as it uses to share file data pages. The interesting

difference is the mechanism for finding the requested page when a
process takes a page fault.

In IRIX, anonymous pages are managed in copy-on-write trees,
similar to the MACH approach [15]. An anonymous page is
allocated when a process writes to a page of its address space that

is shared copy-on-write with its parent. The new page is recorded
at the current leaf of the copy-on-write tree. When a process forks,
the leaf node of the tree is split with one of the new nodes assigned
to the parent and the other to the child, Pages written by the parent

process after the fork are recorded in its new leaf node, so only the

anonymous pages allocated before the fork are visible to the child.
When a process faults on a copy-on-write page, it searches up the

tree to find the copy created by the nearest ancestor who wrote to
the page before forking.

In Hive, the parent and child processes might be on different

cells. There are several different ways to change anonymous page

management to respond to this, We chose this issue as the subject

for an experiment on the effectiveness of building distributed

kernel data structures.
We keep the existing tree structure nearly intact, and allow the

pointers in the tree to cross cell boundaries. The leaf node
corresponding to a process is always local to a process. Other
nodes might be remote. This does not create a wild write

vulnerability because the lookup algorithms do not need to modify
the interior nodes of the tree or synchronize access to them.

When a child read-faults on a shared page, it searches up the

tree, potentially using the careful reference protocol to read from

the kernel memory of other cells. If it finds the page recorded in a
remote node of the tree, it sends an RPC to the cell that owns that

node to set up the export/import binding. The cell that owns the

node is always the data home for the anonymous page.
The fact that this implementation appears to work reliably in the

face of fault injection experiments (Section 7) indicates that

distributed data structures can be built without weakening fault
containment, However, we do not observe any substantial
performance benefit in this case. When the child finds a desired
page it usually has to send an RPC to bind to the page in any case,

so the use of shared memory does not save much time unless the
tree spans multiple cells. A more conventional RPC-based
approach would be simpler and probably just as fast, at least for
the workloads we evaluated.

20

5.4 Physical-level sharing

The logical-level design just described for both file data and

anonymous data has a major constraint: all pages must be in them

data home’s page cache. If this design constrained all pages to be

stored in the data home’s memory, Hive would have poor load

balancing and would not be able to place pages for better locality

to the processes that use them, which is required for performance
on a CC-NUMA machine. Physical-level sharing solves this
problem.

Hive reuses the extended pfdat mechanism to enable a cell, the

memory home, to loan one of its page frames to another cell,

which becomes the data home (Figure 5 .3b). The memory home

moves the page frame to a reserved list and ignores it until the data

home frees it or fails. The data home allocates an extended pfdat

and subsequently manages the frame as one of its own (except it
must send an RPC to the memory home when it needs to change

the firewall state),

Frame loaning is usually demand-driven by the page allocator.
When the page allocator receives a request, it may decide to

allocate a remote frame. Wax will eventually provide the policy

support for remote allocation. If a cell decides to allocate remotely,
it sends an RPC to the memory home asking for a set of pages.

Borrowed frames are not acceptable for all requests. For

example, frames allocated for internal kernel use must be local,
since the firewall does not defend against wild writes by the

memory home. The page allocator supports constraints by taking

two new arguments, a set of cells that are acceptable for the

request and one cell that is preferred.

Hive’s current policy for freeing borrowed frames is similar to
its policy for releasing imported pages. It sends a free message to

the memory home as soon as the data cached in the frame is no

longer in use. This can be a poor choice in some cases because it

results in immediately flushing the data. We have not yet
developed a better policy.

5.5 Logical/physical interactions

In general, the two types of memory sharing operate independently
and concurrently. A given frame might be simultaneously

borrowed and exported (when the data home is under excessive
memory pressure so it caches pages in borrowed frames). More
interestingly, a frame might be simultaneously loaned out and

imported back into the memory home. This can occur when the

data home places a page in the memory of the client cell that has
faulted to it, which helps to improve CC-NUMA locality.

To support this CC-NUMA optimization efficiently, the wrtual
memory system reuses the preexisting pfdat rather than allocating

an extended pfdat when reimporting a loaned page. This is

possible because the logical-level and physical-level state
machines use separate storage within each pfdat.

5.6 Memory sharing and fault containment

Memory sharing allows a corrupt cell to damage user-level
processes running on other cells. This has several implications for

the system:

● The page allocation and migration policies must be sensitive to
the number and location of borrowed pages already allocated to

a given process. If pages are allocated randomly, a long-running
process will gradually accumulate dependencies on a large
number of cells.

. The generation number strategy used for preemptive discard

(Section 4.2) makes the tile the unit of data loss when a cell
fails. Therefore the page allocation and migration policies must
be sensitive to the number of different cells that are memory
homes for the dirty pages of a given file.

The tradeoffs in page allocation between fault containment and

performance are complex; we have not yet studied them in enough

detail to recommend effective allocation strategies.

5.7 Summary of memory sharing implementation

The key organizing principle of Hive memory sharing is the

distinction between the logical and physical levels. When a cell
imports a logical page it gains the right to access that data

wherever it is stored in memory. When a cell borrows a physical

page frame it gains control over that frame. Extended pfdats are
used in both cases to allow most of the kernel to operate on the

remote page as if it were a local page. Naming and location

transparency are provided by the file system for tile data pages and
by the copy-on-write manager for anonymous pages.

There are no operations in the memory sharing subsystem for a

cell to request that another return its page or page frame. The

information available to each cell is not sufficient to decide
whether its local memory requests are higher or lower priority than
those of the remote processes using those pages. This information
will eventually be provided by Wax, which will direct the virtual

memory clock hand process running on each cell to preferentially

free pages whose memory home is under memory pressure.

6 RPC Performance Optimization

We have focused development so far on the fault containment and

memory sharing functionality of Hive. However, it was clear from

the start that intercell RPC latency would be a critical factor in
system performance. RPCS could be implemented on top of
normal cache-coherent memory reads and writes, but we chose to

add hardware message support to FLASH in order to minimize
latency.

Without hardware support, intercell communication would have
to be layered on interprocessor interrupts (IPIs) and producer-

consumer buffers in shared memory. This approach is expensive if

the IPI carries no argument data, as on current multiprocessors.
The receiving cell would have to poll per-sender queues to

determine which cell sent the IPI. (Shared per-receiver queues are
not an option as this would require granting global write

permission to the queues. allowing a faulty cell to corrupt any

message in the system.) Data in the queues would also ping-pong

between the processor caches of the sending and receiving cells.

We added a short interprocessor send facility (SIPS) to the

FLASH coherence controller. We combme the standard cache-line

delivery mechanism used by the cache-coherence protocol with

the interprocessor interrupt mechanism and a pair of short receive

queues on each node. Each SIPS delivers one cache line of data
(128 bytes) in about the latency of a cache miss to remote memory,

with the reliability and hardware flow control characteristic of a

cache miss. Separate receive queues we provided on each node for
request and reply messages, making deadlock avoidance easy. An

early version of the message send primitive is described in detail
in [8].

The Hive RPC subsystem built on top of SIPS is much leaner

than the ones in previous distributed systems. No retransmission or
duplicate suppression is required because the primitive is reliable.

No message fragmentation or reassembly is required because any
data beyond a cache line can be sent by reference (although the
careful reference protocol must then be used to access It). 128
byte. is large enough for the argument and result data of most

RPCS. The RPC subsystem is also simplified because it supports
only kernel-to-kernel communication. User-level RPCS are
implemented at the library level using direct access to the message

send primitive.

21

The base RPC system only supports requests that are serviced at

interrupt level. The minimum end-to-end null RPC latency
measured using SimOS is 7.2 ys (1440 cycles), of which 2 ps m

SIPS latency. This time is fast enough that the client processor
spins waiting for the reply. The client processor only context-

switches after a timeout of 50 psec, which almost never occurs.

In practice the RPC system can add somewhat more overhead

than measured with the null RPC. As shown in Table 5,2, we

measured an average of 9.6 ps (1920 cycles) for the RPC

component of commonly-used interrupt-level request (excluding

the time shown in that table to allocate and copy memory for
arguments beyond 128 bytes). The extra time above the null RPC
latency 1sprimarily due to stub execution.

Layered on top of the base interrupt-level RPC mechanism is a

queuing service and server process pool to handle longer-latency
requests (for example, those that cause 1/0). A queued request is
structured as an initial interrupt-level RPC which launches the

operation, then a completion RPC sent from the server back to the
client to return the result. The minimum end-to-end null queued

RPC latency is 34 ~sec, due primarily to context switch and

synchronization costs. In practice the latency can be much higher

because of scheduling delays.

The significant difference in latency between interrupt-level

and queued RPCS had two effects on the structure of Hive. First,
we reorganized data structures and locking to make it possible to

service common RPCS at interrupt level. Second, common

services that may need to block are structured as initial best-effort

interrupt-level service routines that fall back to queued service
routines only if required.

7 Experimental Results

In this section we report the results of experiments on the Hive

prototype. Frost we describe SimOS and the machme model used
for our experiments in more detail. Next we present the results of

performance experiments, fail-stop hardware fault experiments,
and software fault experiments.

7.1 SimOS environment

SimOS [18] is a complete machine simulator detailed enough to
provide an accurate model of the FLASH hardware. It can also run
in a less-accurate mode where it is fast enough (on an SGI

Challenge) to boot the operating system quickly and execute
interactive applications m real time. The abdity to dynamically

switch between these modes allows both detailed performance
studies and extensive testing.

Operating systems run on SimOS as they would run on a real
machine, The primary changes required to enable IRIX and Hive
to run on SimOS are to the lowest level of the SCSI driver,

ethernet and console interfaces. Fewer than 100 lines of code
outside the device drivers needed modification.

Running on SimOS exposes an operating system to all the

concurrency and all the resource stresses it would experience on a
real machine. Unmodltied binaries taken from SGI machines
execute normally on top of IRIX and Hive running under SlmOS
We believe that this environment is a good way to develop an

operating system that requires hardware features not available on
current machmes, It is also an excellent performance measurement
and debugging environment [17].

7.2 Simulated machine

We simulate a machine similar in performance to an SGI

Challenge multiprocessor, with four 200-MHz MIPS R4000-class
processors, 128 MB of memory, four disk controllers each with
one attached disk, four ethernet interfaces, and four consoles, The

machine is divided into four nodes, each with one processor, 32

MB of memory, and one of each of the 1/0 devices. This allows

Hive to be booted with either one, two or four cells.

Each processor has a 32 KB two-way-associative primary

instruction cache with 64-byte lines, a 32 KB two-way-associative
primary data cache with 32-byte lines, and a 1 MB two-way-

associative unified secondary cache with 128-byte lines. The

simulator executes one instruction per cycle when the processor is

not stalled on a cache miss.

A first-level cache miss that hits in the second-level cache stalls

the processor for 50 ns. The second-level cache miss latency is
fixed at the FLASH average miss latency of 700 ns. An

interprocessor interrupt (IPI) is delivered 700 ns after it is

requested, while a SIPS message requires an IPI latency plus
300 ns when the receiving processor accesses the data,

Disk latency is computed for each access using an

experimentally-validated model of an HP 97560 dmk drive [9].
SimOS models both DMA latency and the memory controller
occupancy required to transfer data from the disk controller to

main memory.

There are two inaccuracies in the machine model that affect our

performance numbers. We model the cost of a firewall status

change as the cost of the uncached writes required to communicate
with the coherence controller. In FLASH, additional latency will

be requu-ed when revoking write permission to ensure that all

pending valid writebacks have completed. The cost of thm

operation depends on network design details that have not yet been
finalized. Also, the machine model provides an oracle that

indicates unambiguously to each cell the set of cells that have
failed after a fault. This performs the function of the distributed

agreement protocol described in Section 4.3, which has not yet
been implemented,

7.3 Performance tests

For performance measurements, we selected the workloads shown

in Table 7.1, These workloads are characteristic of the two ways

we expect Hive to be used. Raytrace and ocean (taken from the

Splash-2 suite [21]) are parallel scientific applications that use the

system in ways characteristic of supercomputer enwronments.
Pnzake (parallel make) is charactermtic of use as a muhi-

programmed compute server. In all cases the file cache was
warmed up before running the workloads.

We measured the time to completion of the workloads for Hive

configurations of one, two, and four cells. For comparison
purposes, we also measured the time under IRIX 5.2 on the same

four-processor machine model. Table 7.2 gives the performance of
the workloads on the various system configurations.

As we expected, the overall impact of Hive’s multicellular

architecture is neghglble for the parallel scientific apphcations,
After a relatively short initialization phase which uses the file
system services, most of the execution time is spent in user mode.

Even for a parallel make, which stresses operating system
services heavdy, Hive is within 1170 of IRIX performance when
configured for maximum fault containment with one cell per
processor. The overhead is spread over many different kernel

operations, We would expect the overhead to be higher on
operations which are highly optimized in IRIX, To illustrate the
range of overheads, we ran a set of microbenchmarks on

representative kernel operations and compared the latency when
crossing cell boundaries with the latency in the local case.

Table 7.3 gives the results of these microbenchmarks, The

overhead is quite small on complex operations such as large file

reads and writes. It ranges up to 7.4 times for simple operations
such as a page fault that hits in the page cache. These overheads
could be significant for some workloads, but the overall
performance of pmake shows that they are mostly masked by other

22

Name Description

ocean simulation; 130 by 130 grid, 900 second interval

I raytrace I rendering a teapot; 6 antlalias rays per pixel I

I pnurke I compilation; 11 files of GnuChess 3.1, four at a time]

TABLE 7.1, Workloads and datasets used for tests,

Slowdowns on Hive

Workload
IRIX 5.2

time (see) 1 cell 2 cells 4 cells

4 CPUs/cell 2 CPUslcell 1 CPU/cell

ocean 6.07 1 ‘%0 170 –1 %

I raytrace I 4.35 I o Y. I 0%11%1

pntake 5.77 1% 10 % 11 %

TABLE 7.2. Workload timings on a four-processor machine.
As expected, the partition into cells has little effect on the

performance of parallel scientific applications. It has a larger effect
on compilation, which uses operating system services intensively.

Operation Local
Remote/

Remote
local

4 MB file read (msec) 65.0 76.2 1.2

I 4 MB file write/extend (msec) I 83.7 I 87.3 I 1.1 I

I open file (~sec) I 148 I 580 I 3.9 I

Ipage fault that hits in file I 6.9 I 50.7 I 7.4
cache (~sec) I

TABLE 7.3. Local vs. remote latency for kernel operations.

The overhead of crossing cell boundaries is low for complex

operations such as file read and write, but high for operations
which are highly optimized in the local case such as quick fault.

Times were measured on a two-processor two-cell system using

microbenchmarks, with the file cache warmed up.

effects (such as disk access costs) which are common to both SMP

and multicellular operating systems.

7.4 Fault injection tests

Itis difficult to predict the reliability of a complex system before it

has been used extensively, and probably impossible to demonstrate

reliability through fault injection tests. Still, fault injection tests

can provide an initial indication that reliability mechanisms are

functioning correctly.
For fault injection tests in Hive, we selected a few situations

that stress the intercell resource sharing mechanisms. These are the

parts of the architecture where the cells cooperate most closely, so
they are the places where it seems most likely that a fault in one
cell could corrupt another. We also injected faults into other kernel
data structures and at random times to stress the wild write defense

mechanism.
When a fault occurs, the important parts of the system’s

response are the latcmcy until the fault is detected, whether the

damage is successfully confined to the cell in which the fault
occurred, and how long lt takes to recover and return to normal
operation. The latency until detection IS an Important part of the
wild write defense, while time required for recovery is relatively

Latency until

Injected fault type and workload # last cell enters

(P= pmake, R = raytrace) tests recovery (msec)

Avg Max

Node failure:

during process creation P 20 16 21
during copy-on-write search R 9 10 11
at random time P 20 21 45

Corrupt pointer in:

process address map P 8 38 65

copy-on-write tree R 12 401 760

TABLE 7.4. Fault injection test results.
The tests used a four processor system booted with four cells. In all

tests Hive successfully contained the effects of the fault to the cell
in which it was injected.

unimportant because faults are assumed to be rare. We measured

these quantities using both the pmake and raytrace workloads,

because mtrkiprogrammed workloads and parallel applications
stress different parts of the wild write defense.

We used a four-processor four-cell Hive configuration for all

the tests. After injecting a fault into one cell we measured the
latency untd recovery had begun on all cells, and observed
whether the other cells survived. After the fault injection and

completion of the main workload, we ran the pmake workload as a
system correctness check. Since pmake forks processes on all
cells, its success is taken as an indication that the surviving cells

were not damaged by the effects of the injected fault. To check for

data corruption, all files output by the workload run and the

correctness check run were compared to reference copies.

Table 7.4 summarizes the results of the fault injection tests. In
all tests, the effects of the fault were contained to the cell in which
it was injected, and no output files were corrupted.

●

●

Hardware fault injection tests: We simulated fail-stop node
failures by halting a processor and denying all access to the

range of memory assigned to that processor. We observe that

the latency until the fault is detected always falls within a
narrow range. This M an effect of the clock rnomtoring

algorithm, which puts a narrow upper bound on the time until

some cell accesses the failed node’s memory, receives a bus
error, and triggers recovery.

Softiare fault injection tests: Each software fault injection
simulates a kernel bug by corrupting the contents of a kernel

data structure. To stress the wild write defense and careful
reference protocol, we corrupted pointers in several

pathological ways: to address random physical addresses in the

same cell or other cells, to point one word away from the

original address, and to point back at the data structure itself.

Some of the simulated faults resulted in wild writes, but none
had any effect beyond the preemptive discard phase of
recovery. The careful reference protocol successfully defended

cells when they traversed corrupt pointers in other cells.

We also measured the latency of recovery. The latency of recovery
varied between 40 and 80 milliseconds, but the use of the failure
oracle in these experiments implies that the latency in practice

could be substantially higher. We intend to characterize the costs

of recovery more accurate] y in future studies.
Development of the fault containment mechanisms has been

substantially simplified through the use of SimOS rather than real
hardware. The ability to determinist] cally recreate execution from

a checkpoint of the machme state, provided by SimOS, makes it
straightforward to analyze the complex series of events that follow

23

Feature Description

Reauired features:

FirewaIl IAccess control list per page of memory. This

enables each cell to defend against wild writes. I
Memory lInterfacebetweentheOSandthememorysystem I

fault that specifies how memory behaves when a

model hardware fault occurs.

Remap Range of physical memory addresses that is

region remapped toaccess node-local memory. This

enables each cell to have its own trap vectors.

Optimizcztkms:

SIPS Low-latency interprocessor message send.

Memory I Coherence controller function thatcuts offall I

cutoff remote accesses to the node-local memory. This

M used by the cell panic routine to prevent the

spread of potentially corrupt data to other cells.

TABLE 8.1. Summary of custom hardware used by Hive.

after a software fault. We expect to continue using SlmOS for thm
type of development even after the FLASH hardware is available.

8 Discussion

The current Hive prototype demonstrates that it m possible to
provide significantly better rehability for shared-memory

multiprocessors than is achieved by SMP OS implementations.
However, there are several issues that must be addressed before we

can suggest that production operating systems be constructed

using the techniques described in this paper:

Hardware support: Various aspects of the Hive design depend on
hardware features that are not standard in current multiprocessors.

Table 8.1 summarizes the special-purpose support that we added to
FLASH, including a few features not discussed earlier m the paper.

Of these features, the firewall requires the most hardware
resources (for bit vector storage). The memory fault model
reqtures attention while designing the cache-coherence protocol,

but need not have a high hardware cost as long as it does not try to

protect against all possible faults.

The hardware features used by Hive appear to allow a range of

implementations that trade off among performance, cost, and fault

containment. This suggests that a system manufacturer interested
m improved reliability could choose an appropriate level of

hardware support. We do not see this issue as a barrier to
production use of a system like Hive.

Architectural tradeoffs: Significant further work on the Hive
prototype is required to explore the costs of a multicellular

architecture.

● Wax.. There are two open questions to be investigated once Wax
is implemented. We must determme whether an optimization

module that is “out of the loop” like Wax can respond rapidly to
changes in the system state. without runmng continuously and
thereby wasting processor resources. We also need to

investigate whether a two-level optimization architecture

(intracell and mtercell decisions made independently) can
compete with the resource management efficiency of a modern
UNIX implementation.

● Resource shar-mg: Pohcles such as page migration and intercell
memory sharing must work effectively under a wide range of
workloads for a multicellular operating system to be a viable

replacement for a current SMP 0S. Spanning tasks and process

migration must be implemented. The resource sharing policies

must be systematically extended to consider the fault
containment implications of sharing decisions. Some statistical

measure is needed to predict the probability of data integrity

violations in production operation.

● File svstem: A multicellular architecture requires a fault-

tolerant high performance file system that pr&erves single-

system semantics. This will reqture mechamsrns that support
file replication and striping across cells, as well as an efficient
implementation of a globally coherent and location indepen-

dent file name space.

Other advantages of the architecture: We also see several areas,

other than the reliability and scalability issues which are the focus

of this paper, in which the techniques used in Hive might provide
substantial benefits.

● Heterogeneous resource management: For large diverse
workloads, performance may be improved by managing

separate resource pools with separate policies and mechanisms.
A multicellular operating system can segregate processes by

type and use different strategies in different cells. Different

cells can even run different kernel code if their resource
management mechanisms are incompatible or the machine’s

hardware is heterogeneous.

● Support for CC-NOW: Researchers have proposed workstation

add-on cards that will provide cache-coherent shared memory
across local-area networks [12]. Also, the FLASH architecture
may eventually be distributed to multiple desktops, Both

approaches would create a cache-coherent network of
workstations (CC-NOW). The goal of a CC-NOW is a system

with the fault isolation and administrative independence

character stic of a workstation cluster, but the resource sharing
characteristic of a multiprocessor. Hive M a natural starting

point for a CC-NOW operating system.

9 Related Work

Fault containment m shared-memory multiprocessor operating
systems appears to be a new problem. We know of no other

operating systems that try to contain the effects of wild writes

wtthout giving up standard multiprocessor resource sharing.

Sullivan and Stonebraker considered the problem in the context of

database implementations [19], but the strategies they used are

focused on a transactional environment and thus are not directly

applicable to a standard commercial operating system.

Reliability is one of the goals of mlcrokernel research. A
mlcrokernel could support a distributed system like Hive and
prevent wild writes, as discussed in Section 2, However, existing

mlcrokernek such as Mach [15] are large and complex enough that
It M difficult to trust their correctness. New microkernels such as
the Exokernel [6] and the Cache Kernel [4] may be small enough

to provide reliability.

An alternative reliability strategy would be to use traditional
fault-tolerant operating system implementation techniques.
Previous systems such as Tandem Guardian [2] provide a much

stronger reliabihty guarantee than fault containment. However, full
fault tolerance requires rephcatlon of computation, so lt uses the
available hardware resources inefficiently. While this is

appropriate when supporting applications that cannot tolerate
partial failures, It is not acceptable for performance-oriented and
cost-sensitive multiprocessor environments.

Another way to look at Hive is as a distributed system where
memory and other resources are freely shared between the kernels.
The NOW project at U.C. Berkeley is studying how to couple a
cluster of workstations more tightly for better resource sharing [1],

24

The hardware they assume for a NOW environment does not

provide shared memory, so they do not face the challenge of wild
writes or the opportunity of directly accessing remote memory.

However, much of their work is directly applicable to improving

the resource management policies of a system like Hive.

The internal distributed system of Hive requires it to synthesize

a single-system image from multiple kernels. The single-system
image problem has been studied in depth by other researchers

(Sprite [131, Locus [14], OSF/1 AD TNC [221). Hive reuses some
of the techniques developed in Sprite and Locus.

10 Concluding Remarks

Fault containment is a key technique that will improve the

reliability of large-scale shared-memory multiprocessors used as

general-purpose compute servers. The challenge is to provide

better reliability than current multiprocessor operating systems

without reducing performance.

Hive implements fault containment by running an internal

distributed system of independent kernels called cells. The basic

memory isolation assumed by a distributed system is provided

through a combination of write protection hardware (the firewall)

and a software strategy that discards all data writable by a failed

cell. The success of this approach demonstrates that shared
memory is not incompatible with fault containment.

Hive strives for performance competitive with current
multiprocessor operating systems through two main strategies.

Cells share memory freely, both at a logical level where a process
on one cell accesses the data on another, and at a physical level

where one cell can transfer control over a page frame to another.

Load balancing and resource reallocation are designed to be driven

by a user-level process, Wax, which uses shared memory to build a

global view of system state and synchronize the actions of various

cells. Performance measurements on the current prototype of Hive

are encouraging, at least for the limited tests carried out so far.

Finally, the multicellular architecture of Hive makes it
inherently scalable to multiprocessors significantly larger than
current systems. We believe this makes the architecture promising

even for environments where its reliability benefits are not
required.

Acknowledgments

We are grateful to Silicon Graphics, Inc. for giving us access to the

IRIX source code. Frans Kaashoek, the other program committee

members, and the reviewers provided valuable comments that

substantially improved this paper. We thank the SimOS

development team for supporting this work and adding fault
injection functionality to the system.

This work was supported in part by ARPA contract DABT63-
94-C-0054. John Chapin is supported by a Fannie and John Hertz
Foundation fellowship. Mendel Rosenblum is partially supported

by a National Science Foundation Young Investigator award.
Anoop Gupta is partially supported by a National Science
Foundation Presidential Young Investigator award.

References

[I] T. Anderson, D. CulIer, and D. Patterson. “A Case for NOW

(Networks of Workstations).” IEEE Micra 15(1).54-64, February
1995,

[2] J. Bartlett, J. Gray. and B. Horst. “’Fault Tolerance m Tmdem
Computer Systems.” In EL,OIUIW??(~ Fault-TO/erant Computrng, pp.
55-76, Springer-Verlsig, 1987.

[3] D. Chalken and A. Agarwal. “Software-Extended Coherent Shared
Memory: Performance and Cost.” In Procwediogs of rk 21st Amuud
International Symposium on Computer Architecture, pp. 314-324,
April 1994.

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

[11]

[1~]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Cheriton and K. Duds. “A Caching Model of Operating System

Kernel Functionality.” In Proceedings of the First LJSENIX

Symposium on Operating S.vstetns Design and I??lpletfzerlfatlott, pp.
179-193, November 1994.

Convex Computer Corporation Convex Exemplar: System

Overview. Order No. 080-002293-000, 1994.

D. Engler, M.F. Kaashoek, and J. O’Toole Jr. Exokernel: An
Operating System Architecture For Application-Level Resource
Management, In Proceedirrg~ of the F(freerrth ACM .svmposiam OH

Operating Systems Principle.\. December 1995.

J. Gray and A. Reuter. Tratuacmm Processing: Concepts and
T?chmques. Morgan Kaufmann, 1993.

J. Heinleio, K. Gharachorloo. S. Dresser, and A. Gupta. ‘<Integration
of Message Passing and Shared Memory in the Stanford FLASH
Multiprocessor.” In Sixth International Conference on Architectural
Support for Programming Languages trod Operating Systems, pp.

38-50, October 1994.

D. Kotz, S. ‘Toh, and S. Radbakrisbnan. “A Detailed Slmcrlation of

tbe HP 97560 Disk Drive.” Technical Report PCS-TR94-20,

Dartmouth University, 1994.

J. Kuskin, D. Ofelt, M. Hemrich, J. Hemiein, R. Slmom. K. Gbarac-
horloo, J. Chapin, D. Nakahira, J, Baxter, M, Horowitz, A. Guptss.

M. Rosenblum, and J. Hennessy. “The Stanford FLASH Multipro-
cessor.” In Proceedurgs of the 2 l.~t Internutlonal Sympo~iun] o?l

Computer Architecture, pp. 302-313, April 1994.

D. Lenoski, J. Lmrdon, K. Gharachorloo, W. Weber, A. Gupta, J.
Hennessy. M. Horowitz, and M. Lam. “The Stanford DASH Mcrlti-
processor.” Computer 25(3):63-79. March 1992

A, Nowatzyk. G. Aybay, M. Browne. E, Kelly, D. Lee, and M. Park
“The S3.mp Scalable Shared Memory Multiprocessor.” In

Proceedings O] 27th Habva!l International Conference cm Systems

Sciences, pp. 144-153, January 1994.

J. Ousterhout. A. Cherenson. F. Doughs. M. Nelson, and B. Welch.
“The Sprite Network Operating System.” Computer 21 (2):23-36.

February 1988.

G. Popek and B. Walker (eds.) The LOCUS Distributed Sys[em
Architecture. MIT Press, 1985.

R, Rashid, A. Tevaman, Jr., M. Young, D. Golcrb, R. Baron, D.
Black, W Bolosky. and J. Chew. “Machine-Independent Virtual

Memory Management for Paged Umprocessor and Multiprocessor
Architectures.” IEEE T?atisactmms o~] Computers 37(8):896-908.
August 1988.

A. Ricciardi and K. Birmmr. “Using Process Groups To Implement
Failure DetectIon in Asynchronous Environments.” In Proceedings

(?fthe Tetitb Annual ACM Symposium 017 Princ@es ofDmtributed

Cmrrputing, pp. 34 I -353, August 1991

M, Rosenblum, E. Bugnion, S. Herrod, E. Witchel, turd A. Gupta

“The hmpact of Architectural Trends on Operating System Perfor-
mance.” In Proceedings of the F(jieentb ACM Symposium on

Operating Sy.\~em.sPrinciples. December 1995

M. Rosenblcrm, S. Herrod. E. Whchel, and A. Gupta. “Fast and
Accurate Multiprocessor Simulation: The SimOS Approach,” IEEE
Parallel aod Distributed Technology 3(4), Fall 1995.

M Sulllvan and M Stonebraker. “Improvmg Software Fault

Tolerance in Highly Available Database Systems,” Technical reports
UCB/ERL M90/1 1, University of California. Berkeley, 1990, and
UCB/ERL M9 1/56, 1991

M. Sulllvwr and R. Chlllarege. “Software Defects and Their Impact
on System Avallabillty—A Study of Field Failures in Operating
System s.” In Proceed/ng,s of tbe 21st IIltertlat[om{l S~mpa.sium on

Faalt-Tolerant Computing. pp. 2-9, June 1991.

S Woo, M. Ohara, E. Torrle, J.P. Singh, and A. Gupta. “’The

SPLASH-2 Programs: Characterization and Methodological
Considerations.” In Proceedings of the 22nd A!zI?ual lntermltimwl
SYmposiuw an Compurev Arch\ recture, pp 24-36, June 1995.

R. Zajcew, P. Roy, D. Black, C, Peak. P. Guedes. B. Kemp, J. Lo
Verse, M. Leibensperger, M. Barnett, F. Rabit, and D. Netterwala.

“An OSF/ I Umx for Massively P~rallel Muklcornputers.” In
Proceed/rigs of tbe Wmfer 199.? USENIX Conference, pp. 449-468,
January 1993.

9~

