
Recovery Management in Quicksilver

ROGER HASKIN, YONI MALACHI, WAYNE SAWDON,
AND GREGORY CHAN
IBM Almaden Research Center

This paper describes Quicksilver, developed at the IBM Almaden Research Center, which uses atomic
tran.sactions as a unified failure recovery mechanism for a client-server structured distributed system.
Transactions allow failure atomicity for related activities at a single server or at a number of
independent servers. Rather than bundling transaction management into a dedicated language or
recoverable object manager, Quicksilver exposes the basic commit protocol and log recovery primi-
tives, allowing clients and servers to tailor their recovery techniques to their specific needs. Servers
can implement their own log recovery protocols rather than being required to use a system-defined
protocol. These decisions allow servers to make their own choices to balance simplicity, efficiency,
and recoverability.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File System Management-distrib-
uted file systems; file organization; maintenance; D.4.5 [Operating Systems]: Reliability-FauZt-
tolerance; checkpoint/restart; H.2.4 [Database Management]: Systems--distributed systems; trun.s-
action processing

General Terms: Design, Experimentation, Performance, Reliability

Additional Key Words and Phrases: Commit protocol, distributed systems, recovery, transactions

1. INTRODUCTION

The last several years have seen the emergence of two trends in operating system
design: extensibility, the ability to support new functions and machine configu-
rations without changes to the kernel; and distribution, partitioning computation
and data across multiple computers. The Quicksilver distributed system, being
developed at the IBM Almaden Research Center, is an example of such an
extensible, distributed system. It is structured as a lean kernel above which
system services are implemented as processes (sewers) communicating with
other requesting processes (clients) via a message-passing interprocess commu-
nication (IPC) mechanism. Quicksilver is intended to provide a computing
environment for various people and projects in our laboratory, and to serve as a
vehicle for research in operating systems and distributed processing.

One price of extensibility and distribution, as implemented in Quicksilver, is
a more complicated set of failure modes, and the consequent necessity of dealing
with them. Most services provided by traditional operating systems (e.g., file,

Authors’ address: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1966 ACM 0734-2071/66/0200-0062 $01.50

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1968, Pages 82-108.

Recovery Management in QuickSilver l 83

display) are intrinsic pieces of the kernel. Process state is maintained in kernel
tables, and the kernel contains cleanup code (e.g., to close files, reclaim memory,
and get rid of process images after hardware or software failures). Quicksilver,
however, is structured according to the client-server model, and as in many
systems of its type, system services are implemented by user-level processes that
maintain a substantial amount of client process state. Examples of this state are
the open files, screen windows, and address space belonging to a process. Failure
resilience in such an environment requires that clients and servers be aware of
problems involving each other. Examples of the way one would like the system
to behave include having files closed and windows removed from the screen when
a client terminates, and having clients see bad return codes (rather than hanging)
when a file server crashes. This motivates a number of design goals:

(1) Properly written programs (especially servers) should be resilient to external
process and machine failures, and should be able to recover all resources
associated with failed entities.

(2) Server processes should contain their own recovery code. The kernel should
not make any distinction between system service processes and normal
application processes.

(3) To avoid the proliferation of ad-hoc recovery mechanisms, there should be a
uniform system-wide architecture for recovery management.

(4) A client may invoke several independent servers to perform a set of logically
related activities (a unit of work) that must execute atomicalZy in the presence
of failures, that is, either all the related activities should occur or none of
them should. The recovery mechanism should support this.

In Quicksilver, recovery is based on the database notion of atomic transactions,
which are made available as a system service to be used by other, higher-level
servers. This allows meeting all the above design goals. Using transaction-based
recovery as a single, system-wide recovery paradigm created numerous design
problems because of the widely different recovery demands of the various
Quicksilver services. The solutions to these problems will be discussed in detail
below. However, we will first discuss the general problem of recovery management
and consider some alternative approaches.

1 .l Recovery from System and Process Failures

The problems with recovery in a system structured according to the client-server
model arise from the fact that servers in general maintain state on behalf of
clients, and failure resilience requires that each be aware of problems involving
the other. Examples of this state are the open tiles, screen windows, and address
space belonging to a client process. Examples of the way one would like the
system to behave include having files closed and windows removed from the
screen when a client terminates, and having clients see bad return codes (rather
than hanging) when a tile server crashes.

Timeouts. A simple approach to recovery is for clients to set timeouts on their
requests to servers. One problem with this is that it substantially complicates
the logic of the client program. Another obvious problem is the difficulty of

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1968.

84 l R. Haskin et al.

choosing the correct timeout value: excessively long timeouts impair performance
and usability, whereas short timeouts cause false error signals. Both communi-
cation delays and server response time can be unpredictable. A database request
may time out because of a crash, but the database server might also be heavily
loaded, or the request (e.g., a large join) might just take a long time to execute.
False timeouts can cause inconsistencies where the client thinks a request has
failed and the server thinks it has succeeded.

Connectionless protocols. Several systems have attempted to define away the
consistency problems of timeout-based recovery by requiring servers to be con-
nectionless, stateless, and idempotent [9, 221. A client that sees a timeout for an
uncompleted request has the option of retrying or of giving up. Servers keep no
state or only “soft” state, such as buffers that are eventually retired by an LRU
policy. We think the stateless model to be unworkable for several reasons. Some
state, such as locks on open files or the contents of windows, is inherently “hard.”
Some services, such as graphics output to intersecting areas, require requests to
be sequenced and not to be repeated. Furthermore, the server’s semantics may
require several client requests to be processed atomically. The client giving up in
the middle of a sequence of related requests can cause loss of consistency.

Virtual circuits. Consistency and atomicity problems are partially solved by
employing connection-oriented protocols, such as LU6.2 sessions [171. Failures
are detected by the communications system, which returns an out-of-band signal
to both ends. Atomicity and consistency can be achieved within a virtual circuit
via protocols built on top of it. The primary limitation of virtual circuits is that
they fail independently, thus multiserver atomicity cannot be directly achieved.

Some systems use hybrid recovery techniques that fall somewhere between
timeouts and virtual circuits. In the V-System [9], recovery is done by detecting
process failures. The kernel completes outstanding client requests to failed servers
with a bad return code. Servers periodically execute ValidPid calls to determine
the state of processes for which they are maintaining state. If the process has
failed, the state is cleaned up. V has no system-defined atomic error recovery,
although an architecture for implementing this at the client level via runtime
library functions has been proposed [lo].

Replication. Another approach to failure resilience is through replication.
Clients are presented with the view of a reliable and available underlying system.
Examples of systems that use replication are Locus [29], which replicates the file
system; ISIS [5] and Eden [30], which replicate storage objects; and Circus [12]
and Tandem [4], which replicate processes. Replication simplifies the life of
clients, and eliminates the need for them to detect and recover from server
failures. However, replication is too expensive to use for some system services,
and does not make sense in others (e.g., display management). Furthermore, to
implement replication, servers still have to be able to detect failures and coordi-
nate their recovery. Thus, replicated systems are usually built on top of a
transaction mechanism. Given our desire to have a single recovery mechanism
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1986.

Recovery Management in QuickSilver - 85

institutionalized in the system, we thought transactions to be the better choice
of the two.

1.2 Transactions

Previous work. There is a substantial body of literature relating to transaction-
based recovery in the context of single services, such as file systems [38] and
databases [15]. The applicability of the concept has been explored in the context
of both local [15] and distributed [19, 321 systems. More recently, there have
been several experiments with using transactions as a general recovery mecha-
nism for an operating system. Argus [2l], for example, provides language con-
structs for recoverable shared objects, and provides underlying system facilities
for implementing these constructs. TABS [34] provides transaction management
as a service running under Accent [31], and allows it to be used by data servers
to enable them to implement recoverable objects callable by Accent messages.
More recently, Camelot [36] provides a similar level of function running on Mach
[3]. We will defer comparing Quicksilver to these systems until later in the
paper.

Recovery demands of various servers. A painful fact is that transactions, as
they are normally thought of, are a rather heavyweight mechanism. Using
transactions as a single, system-wide recovery paradigm depends upon being able
to accommodate simple servers in an efficient way. To get a feel for this, let us
examine the characteristics of a few representative servers in Quicksilver.

The simplest class of servers are those that have volatile internal state, such
as the window manager, virtual terminal service, and address space manager
(loader). For example, the contents of windows does not survive system crashes.
These servers only require a signalling mechanism to inform them of client
termination and failures. Often, such servers have stringent performance de-
mands. If telling the loader to clean up an address space is expensive, command
scripts will execute slowly.

A more complex class of servers manages replicated, volatile state. An example
is the name server that other Quicksilver servers use to register their IPC
addresses. To maximize availability, this server is replicated, and updates are
applied atomically to all replicas. The state of each replica is volatile (i.e., not
backed up in stable storage). This is conceptually similar to Synchronous Global
Memory (a. k. a. delta-common storage) [131 and troupes [121. Individual replicas
recover by querying the internal state of a functioning replica. The exceedingly
rare catastrophic simultaneous failure of all replicas is recovered from by having
servers re-register themselves. Replicated volatile state uses transaction commit
to provide atomicity, yielding a useful increase in availability without the expense
of replicated stable storage.

The services that require the most from the recovery manager are those that
manage recoverable state, such as Quicksilver’s transaction-based distributed file
system [7]. The file system uses transactions to recover from server crashes, and
to detect and recover from client crashes. Furthermore, since the file system is
structured as a federation of independent servers on different nodes, the trans-
action mechanism provides atomicity across these servers. Finally, commit

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

86 l R. Haskin et al.

coordination and recovery can be provided atomically between the file system
and other servers (e.g., database) that might exist in the future.

A final class of users are not servers at all. Long-running application programs
with large data sections (e.g., simulations), whose running time may exceed the
mean time between failures of a machine, require a checkpoint facility to make
their state recoverable. Just as logging can be superior to shadowing in a database
system [El, incrementally logging checkpoint data may be superior to dumping
the entire data section to a file. Checkpointable applications use the log directly,
without using commit coordination.

1.3 A Transaction-Based Recovery Manager

The Quicksilver recovery manager is implemented as a server process, and
contains three primary components:

(1) Transaction Manager. A component that manages commit coordination
by communicating with servers at its own node and with transaction man-
agers at other nodes.

(2) Log Manager. A component that serves as a common recovery log both for
the Transaction Manager’s commit log and server’s recovery data.

(3) Deadlock Detector. A component that detects global deadlocks and re-
solves them by aborting offending transactions.

Of these three components, the Transaction Manager and Log Manager have
been implemented and are in use, and will be discussed in detail. The Deadlock
Detector, based on a design described by Obermarck [27], has not been imple-
mented, but is mentioned here to show where it fits into our architecture.

The basic idea behind recovery management in Quicksilver is as follows:
clients and servers interact using IPC messages. Every IPC message belongs to
a uniquely identified transaction, and is tagged with its transaction ID (Tid).
Servers tag the state they maintain on behalf of a transaction with its Tid. IPC
keeps track of all servers receiving messages belonging to a transaction, so that
the Transaction Manager (TM) can include them in the commit protocol. TM’s
commit protocol is driven by calls from the client and servers, and by failure
notifications from the kernel. Servers use the commit protocol messages as a
signalling mechanism to inform them of failures, and as a synchronization
mechanism for achieving atomicity. Recoverable servers call the Log Manager
(LM) to store their recovery data and to recover their state after crashes.

The recovery manager has several important properties that help it address its
conflicting goals of generality and efficiency. Although the remainder of this
paper describes these properties in detail, they bear mentioning now:

-The recovery manager concentrates recovery functions in one place, eliminat-
ing duplicated or ad hoc recovery code in each server.

-Recovery management primitives (commit coordination, log recovery, deadlock
detection) are made available directly, and servers can use them independently
according to their needs.

-The transaction manager allows servers to select among several variants
of the commit protocol (one-phase, two-phase). Simple servers can use a

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver l 87

Process Interprocess Machine

Management Communication Control

Fig. 1. QuickSilver system structure.

lightweight variant of the protocol, while recoverable servers can use full two-
phase commit.

-Servers communicate with the recovery manager at their node. Recovery
managers communicate among themselves over the network to perform dis-
tributed commit. This reduces the number of commit protocol network mes-
sages. Furthermore, the distributed commit protocol is optimized (e.g., when
all servers at a node are one-phase or read only) to minimize log forces and
network messages.

-The commit protocols support mutual dependencies among groups of servers
involved in a transaction, and allows asynchronous operation of the servers.

-The log manager maintains a common log, and records are written sequentially.
Synchronous log I/O is minimized, because servers can depend on TM’s commit
record to force their log records.

-A block-level log interface is provided for servers that generate large amounts
of log traffic, minimizing the overhead of writing log records.

-Log recovery is driven by the server, not by LM. This allows servers to
implement whatever recovery policy they want, and simplifies porting servers
with existing log recovery techniques to the system.

2. QUICKSILVER ARCHITECTURE

A detailed discussion of the Quicksilver recovery management architecture
requires some familiarity with the system architecture. Figure 1 shows the basic
structure of Quicksilver. All services are implemented as processes and, with a
few exceptions,’ are loaded from the tile system. Services perform both high-level
functions, such as managing files and windows, and low-level device driver
functions. The kernel contains three basic components: process management
(creation, destruction, and dispatching), machine control (initialization, invoking
interrupt handlers in user processes), and interprocess communication (IPC).

‘The exceptions are the services used to create address spaces, processes, and to load programs,
namely Process Master (loader), Virtual Memory, Disk I/O, and the File System itself.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

88 ’ R. Haskin et al.

Applications use IPC to invoke services, and services use IPC to communicate
with each other.’ Shared memory is supported among processes implementing
multithreaded applications or servers, but is not used between applications and
services or across any domain that might be distributed.

2.1 Interprocess Communication

Quicksilver IPC is a request-response protocol structured according to the client-
server model. The basic notion is the service, which is a queue managed by the
kernel of the node on which the service is created. Each service has a globally
unique service address that can be used to send requests to the service. A service
can be used for private communication between sets of processes, or can be made
publicly accessible by registering it with the name server, which has a well-known
service address. A process that wishes to handle requests to a service (a server),
offers the service, establishing a binding between the service and a piece of code
(the service routine) inside the server. When the server enters an inactive state
by calling wait, the kernel attempts to match incoming requests to the offer, at
which point the service routine will be invoked. The server can either complete
the request (which sends the results to the client) in the service routine, or can
queue the request internally and complete it later. Server processes must execute
on the node at which the service was created. More than one process can offer a
service, but since there is no method of directing successive requests from the
same client to the same server process, the servers must cooperate to handle such
requests (e.g., via a shared address space).

Client processes can issue any of three kinds of requests: synchronous, asyn-
chronous, or message. Synchronous requests block the client until the server
completes the request. Asynchronous requests are nonblocking and return a
request ID that the client can use later to wait for completion. Message requests
are also nonblocking, but cannot be waited on. Quicksilver IPC supports multiple
wait: requests and/or offers can be combined into groups. Waiting on a group
suspends the process until either a request is completed or an offer is matched
to an incoming request.

Quicksilver makes several guarantees regarding the reliability of IPC: requests
are not lost or duplicated, data is transferred reliably, and a particular client’s
requests are queued to the service in the sequence they are issued. Requests are
matched to waiting offers in the order they are queued, though as mentioned
they are not necessarily completed in order. If a server process terminates before
completing a request, the kernel completes it with a bad return code. IPC’s
semantics are location-transparent in that they are guaranteed regardless of
whether the request is issued to a local or remote service.

2.1.1 Remote IPC. When a client and server are on the same node, the kernel
handles matching requests to offers, dispatching the server, and moving param-
eter data. When a request is made to a server on a remote node (determined by
examining the service address), the kernel forwards the request to the Commu-
nication Manager (CM), a server that manages remote IPC communications (see

’ Normally, programs issue requests by calling runtime-library stubs, which hide the details of
parameter marshalling and message construction from the caller.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver - 89

Kernel A Kernel B

Fig. 2. Quicksilver distributed IPC.

Figure 2). CM implements the location transparent properties of IPC by man-
aging routing, error recovery, and flow control. All IPC traffic between a pair of
nodes is multiplexed over one connection maintained by the CMs on the two
nodes. The CMs implement a reliable communication protocol that allows them
to recover from intermittent errors (e.g., lost packets) and detect permanent ones
(e.g., node or link failure), which are reported to TM. When CM detects a
permanent failure of a connection to a node,3 it causes all uncompleted requests
to servers at that node to be completed with bad return codes.

3. TRANSACTION MANAGEMENT

This section describes how transactions work in Quicksilver, and the roles of
clients, servers, and TMs. The commit coordination protocols are described in
the next section. In Quicksilver, TM supports multisite atomicity and commit
coordination. It does not manage serialization; this remains the responsibility of
the servers that manage access to serializable resources. TM’s knowledge of
transactions is limited to those functions necessary for recovery.

Transactions are identified by a globally unique Transaction Identifier (Tid)
consisting of two parts: the unique node ID of the transaction birth-site, and a
sequence number that TM guarantees to be unique in each machine over time.
Each IPC request in Quicksilver is made on behalf of a transaction and is tagged
with its Tid. Run-time IPC stubs automatically tag requests they generate with
a Tid, which defaults to one automatically created for the process when it begins,
but which can be changed by the process. This allows simple clients to remain
unaware of the transaction mechanism if they so choose. It is required (and
enforced) that a process making a request on behalf of a transaction either be an
owner of that transaction, or a participant in the transaction (both defined
below). Servers tag all resources (state) they maintain on behalf of a transaction
with the Tid. The mapping between transactions and resources enables the server
to recover its state and reclaim resources when the transaction terminates.

3 This implies either node or link failure.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

90 - R. Haskin et al.

Clients and servers access TM by calling run-time library stubs. These build
the IPC requests to TM and return results after TM completes the request.
Asynchronous variants of the stubs allow the caller to explicitly wait for the
result. In the discussion below, “call” will be used to mean “send a request to.”

3.1 Transaction Creation and Ownership

A process calls Begin to start a new transaction. TM creates the transaction,
assigns it a Z’id, and becomes the coordinator for the transaction. The caller
becomes the transaction’s owner. Ownership conveys the right to issue requests
on behalf of the transaction and to call Commit or Abort. Clients can, if they
wish, own and issue requests on behalf of any number of transactions.

The ChangeOwner call transfers ownership of a transaction to a different
process. For example, the Process Master creates a new process, creates its
default transaction, transfers ownership to the new process, and finally starts
the process. Ownership spans the interval between the Begin or ChangeOwner
call and the Commit or Abort call.

3.2 Participation in Transactions

When a server offers its service, it declares whether it is stateless, volatile, or
recoverable. When a volatile or recoverable server receives a request made on
behalf of a transaction it has not seen before, IPC registers the server as a
participant in the transaction. Participants are included in the commit protocol,
and have the right to themselves issue requests on behalf of the transaction.
Participation spans the interval between receiving a request made on behalf of
the transaction and responding to a vote request (see Section 4).

3.3 Distributed Transactions

A transaction becomes distributed when a request tagged with its Tid is issued
to a remote node. When a process (client or server) at node A issues a request to
a server at node B (Sn), IPC registers TM at node B (TMn) as a subordinate of
TM*, and (as above) registers Sn as a participant with TMe. Thus, the TM at
each node coordinates the local activities of a transaction and the activities of
subordinate TMs, and cooperates with superior TMs. The topology of a trans-
action can be thought of as a directed graph, with the coordinator at the root,
TMs at the internal nodes, the owner and servers at the leaves, and arcs pointing
in the direction of the superior-subordinate relation (see Figure 3).4 There is no
global knowledge of the transaction topology; each TM only knows its immediate
superiors and subordinates. IPC assures that the graph is built with the invariant
property that there is always a path connecting the coordinator to each node in
the graph. This property is used to assure proper sequencing of operations during
commit processing.

Using the graph topology rather than a single centralized coordinator was done
for efficiency. The number of network messages is reduced both on the local

’ This organization is similar to the hierarchy described in [23], with the exception that a TM can
have multiple superiors and the graph can have cycles.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver l 91

Fig. 3. Structure of a distributed transaction.

network (since servers communicate only with their node’s TM using local IPC)
and on the internet. For example, QuickSilver’s distributed file system is struc-
tured such that a file’s directory entry and data may reside on different nodes on
the same local-area net. When a client accesses a file over the internet, the
coordinator only communicates with one of the TMs (e.g., the directory manag-
er’s) over the internet; that TM then communicates with the other (e.g., the data
manager’s) over the LAN. This requires fewer internet messages than would be
the case if all TMs communicated directly with the coordinator.

3.4 Transaction Termination and Failure

A TM terminates a transaction in response to one of the following conditions:

(1) The transaction’s owner calls Commit or Abort.
(2) The owner process terminates. Normal termination is equivalent to Commit,

and abnormal termination is equivalent to Abort.
(3) A participant calls Abort.
(4) A volatile or recoverable participant fails (i.e., terminates before voting).

(5) The local CM detects a permanent connection failure to a node whose TM
is a superior in the transaction.

(6) A subordinate TM reports the termination of the transaction.

Any of these conditions cause the TM to initiate its commit processing.
A transaction can fail before it terminates. A failed transaction is not imme-

diately terminated; instead, the failure is remembered and the transaction is
aborted when it does terminate. This allows nonrecoverable operations (e.g.,
error reporting) to continue, but ensures that any further recoverable operations
will be undone. A TM causes a transaction to fail under any of the following
conditions:

(1) A volatile or recoverable participant fails (i.e., terminates before voting).
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1968.

92 l R. Haskin et al.

(2) The local CM detects a permanent connection failure to a node whose TM
is a subordinate in the transaction.

(3) A subordinate TM reports the failure of the transaction.

Note that participant failure can cause either transaction failure or termination.
Servers declare this when they offer their service. The asymmetry in failure of
superior vs. subordinate nodes allows early reclamation of resources for the
subordinate, while allowing the error to be seen and reported by the superior.

3.5 Transaction Checkpoints

The Checkpoint call allows the owner to save the partial results of a transaction.
All the changes to state before the transaction checkpoint take effect permanently
and, if the transaction later aborts, it will roll back only to the checkpoint.
Servers retain any locks that have been acquired by the transaction, so consist-
ency is maintained across checkpoints. Transaction checkpoints provide a means
for long-running applications to survive system crashes and for distributed
programs to synchronize themselves without the overhead of starting a new
transaction at every synchronization point.

4. COMMIT PROCESSING

Quicksilver commit processing closely follows the distributed commit paradigm
described in [23]. However, we will give a brief overview here to establish some
terminology that will be used later. A TM initiates commit processing in response
to a transaction termination condition.5 To abort a transaction, a TM sends
abort requests to all of its participants and immediate subordinate TMs; the
latter recursively propagate the abort request to their participants and subordi-
nates. In attempting to commit a transaction, the coordinator sends vote requests
to all of its participants and immediate subordinate TMs; again, the latter
recursively propagate the vote request. When a recipient of the vote request is
prepared (recoverably ready to commit or abort), it returns its vote (vote-commit
or vote-abort) by completing the request. To become prepared, a TM must
receive vote-commit responses to each of its vote requests. When the coordi-
nator is prepared, it commits the transaction and sends out end requests, which
contain the outcome of the transaction (end-commit., end-abort) and get
propagated in a manner similar to the vote requests. When all end requests
have been completed, signifying that all involved parties know that the transac-
tion has committed, the coordinator ends the transaction.

If a participant fails while prepared, it contacts its local TM after restarting
to find out the status of the transaction. If a TM fails while prepared, it contacts
its superior or the coordinator, whose identity is sent out with the vote requests
and logged in the prepare record.

4.1 Basic Commit Protocols

Quicksilver supports two basic models for committing a transaction; one-phase
and two-phase commit. Servers declare which protocol they follow when they
offer their service.

5 Note that only the coordinator can initiate a commit, but any subordinate TM can initiate an abort.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver l 93

The one-phase protocol is used by servers that maintain only volatile state.
TM sends an end request to each one-phase participant to notify it that the
transaction is terminating. Quicksilver supports three variants of the one-phase
protocol, allowing the server to be notified at different points in the commit
processing. These are:

(1) One-phase immediate. The server is notified during the first (vote) phase
of the two-phase protocol. An example is the window manager, which can
reclaim its resources (windows) without waiting for commit processing to
complete.

(2) One-phase standard. The server is notified when the transaction commits
or aborts. Most servers use this variant.

(3) One-phase delayed. The server is notified when the commit processing
has ended. An example server is CM, which cannot clean up its state (e.g.,
virtual circuits) until after the commit protocol has completed.

The two-phase protocol provides both synchronization and recoverability. The
protocol used by Quicksilver is derived from the two-phase presumed-abort
protocol described in [23]. Presumed abort has advantages that are important to
Quicksilver servers, including its reduced cost for read-only transactions and the
ability to forget a transaction after it ends. Quicksilver extends this protocol to
distinguish between the synchronization and the recoverability it provides, and
to accommodate the directed graph transaction topology. These extensions are
discussed below.

4.2 Voting

Quicksilver defines four votes that a participant may return in response to a
vote request:

(1) Vote-abort. The participant forces the transaction to be aborted. It may
immediately undo its own actions and is not included in phase two of the
commit protocol. The second phase is used to announce the abort to all other
participants.

(2) Vote-commit-read-only. The participant votes to commit the transaction,
declares that it has not modified any recoverable resources, and requests not
to be included in phase two of the commit protocol.

(3) Vote-commit-volatile. The participant votes to commit the transaction,
declares that it has not modified any recoverable resources, but requests to
be informed of the outcome of the transaction during phase two.

(4) Vote-commit-recoverable. The participant votes to commit the transac-
tion, declares that it bus modified its recoverable state, and thus requests to
be informed of the outcome of the transaction during phase two.

Vote-commit-volatile is an extension of the standard presumed-abort pro-
tocol of [23] that allows TM to provide less expensive synchronization for non-
recoverable servers, such as those maintaining replicated volatile state, by

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

94 l R. Haskin et al.

minimizing log activity. If no participants or subordinates respond vote-commit-
recoverable, TM does not write any commit protocol log records.

4.3 Advanced Commit Protocols

Quicksilver guarantees atomicity will be preserved in case of process or machine
failure, and even in the case of an improperly functioning client. In part, this is
achieved by IPC, which guarantees delivery and ordering of requests, enforces
that requests are issued on behalf of valid transactions by valid owners and/or
participants, and keeps track of server participation to ensure that the transaction
graph is properly connected. However, IPC does not guarantee ordering of
requests outside of a single client-server conversation. Since transactions may
involve several separate conversations between clients, servers, and TMs, it is
still possible for the graph not to be fully formed and stable during commit
processing. It is necessary that the commit protocol take this into account. This
section discusses some of these problems and their solutions.

4.3.1 Commit before Participate. Consider the case where a client commits a
transaction before all IPC requests made on its behalf are completed.6 For
example, suppose a client on node A calls a local server (SA,) and commits without
waiting for S..,, to complete the request. Furthermore, suppose SA, calls SA, as
part of processing the client request. TM may see SA,‘s participation after it has
committed the transaction. In such a case, TM would tell Sa, to abort (cf., due
to presumed abort) even though the transaction committed. The simple expedient
of forbidding the client to call Commit with uncompleted requests is not
acceptable, since this is a normal state of affairs (e.g., requests for user input).

To ensure that all servers involved in a transaction participate in the commit
protocol, TM, the kernel, and servers obey the following rules:

Rule 1. TM must accept new participants and include them in the voting until
it commits.

Rule 2. Requests are partitioned into those that must complete before the
transaction commits, and those (called “w-requests”) that need not
complete because they do nothing that could force the transaction to
abort7 TM at a node will not decide to commit a transaction until all
non-w-requests issued on the transaction’s behalf on that node have
completed.

Rule 3. A one-phase server that makes a non-w-request on behalf of a client
transaction (e.g., as part of servicing a request made to it) must make
that request before completing the request it is servicing.

These rules are sufficient to ensure that TM will properly include all partici-
pants in the commit protocol. One-phase-standard and one-phase-delayed servers

6 This can occur during a Commit by a single-process client with uncompleted asynchronous IPC
requests, or by a multiprocess client with uncompleted synchronous requests.
’ w-requests include stateless requests (timeouts, polls), requests for user or device input, and the like.
All requests to stateless servers (see Section 3.2) are w-requests. Servers define their interface to
allow w-requests to be identified. Since requests are typed, this is implemented by defining special
types for such requests.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Recovery Management in QuickSilver l 95

receive their end message (terminating their participation) after the transaction
commits. Rules 2 and 3 ensure that these servers do not issue any requests that
could otherwise force the transaction to abort, after it has already committed.

4.3.2 Cycles in the Transaction Graph, It is possible for cycles to occur in the
transaction graph, for example, when a server on node A (SA) sends a request on
behalf of transaction T to a server on node B (SB), which itself requests SC on
node C, which requests Sg. In this case, TMB has two superior, TM* and TMc.
To accommodate this, each subordinate TM in a transaction distinguishes which
of its superior TMs was the first to issue a request since the start of the
transaction.’ The subordinate TM initiates commit processing when this first
superior TM sends a vote request. TM responds vote-commit-read-only to
the vote requests of all other superior TMs, including new ones that appear
during commit processing. When TM has collected votes from its local servers
and all subordinates, it completes the first superior’s vote request with its vote
on the transaction.

In the above example, TM* would send a vote request to TMB, which would
send a vote request to TMc, which would send a vote request to TMB. TMa
would respond vote-commit-read-only to TMc, which would then (assuming
the transaction was going to commit) respond vote-commit to TMa, which
would itself respond vote-commit to TMA.

4.3.3 New Requests after Becoming Prepared. It is possible for new requests
to arrive at a server after it has voted to commit (e.g., if server SA calls already
prepared server SB). Sg can avoid atomicity problems in a rather heavy-handed
way by refusing to process further requests (i.e., returning a bad return code),
causing SA to abort the transaction (Sa can not have voted). However, such is
not our way. Instead, a prepared server that receives new work on behalf of a
transaction is treated as a new participant. By Rule 1, TM allows the server to
re-vote by sending another vote request to the server, which again becomes
prepared and responds vote-commit. Here, if SA and Sa are on different nodes,
and if TMa is already prepared, TM* becomes the new “first” superior, and TMB
sends a vote request to Sg when it receives a vote request from TMA.

It is possible that either TMB or Sg will not be able to again become prepared,
forcing it to respond vote-abort. The apparent violation of atomicity is resolved
by the observation that the coordinator will not yet have decided to commit and
will eventually see the vote-abort.

4.3.4 Reappearance of a Forgotten Transaction. Some systems [20] allow a
node to unilaterally abort a transaction locally without informing any other
nodes. If a transaction returns to a node that had locally aborted it, the trans-
action may be interpreted as a new one and subsequently committed. This will
break atomicity, as some of the effects of the transaction will be permanent while
some have evaporated with the local abort. The protocol described in [20] uses a
system of time-stamps and low-water marks to preserve atomicity in such
situations.

’ Or since the most recent vote request (see Section 4.3.3).

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

96 l FL Haskin et al.

In Quicksilver, a TM at a node can unilaterally abort a transaction and forget
about it after informing its first superior TM. The effects of the transaction may
be rolled back immediately by participants at or beneath that node. It is not
necessary to force an abort record to the log, since any node failure prior to
completion will cause the transaction to abort anyway. Our approach requires
remembering the aborted transaction until the parent knows about its aborted
status, but saves the extra bookkeeping of time-stamps and low-water marks
associated with all work requests required by the protocol described in [20].

4.4 Coordinator Reliability

The coordinating TM is ordinarily the one at the transaction’s birth-site. In the
performance-critical case of a strictly local transaction, this is the correct choice.
Most transactions are created by user workstations, which are the most likely to
fail (e.g., when the user bumps the power switch or turns off the machine to go
home). Coordinator failure during execution of the commit protocol for a trans-
action involving resources at remote recoverable servers can cause resources to
be locked indefinitely.

Quicksilver uses two mechanisms to harden the coordinator. Both solutions-
coordinator migration and coordinator replication-are cheaper and simpler than
the Byzantine agreement protocol proposed by other researchers [24].

4.4.1 Coordinator Migration. At commit time, when the coordinator knows
that a transaction has become distributed, it can designate a subordinate TM to
take over as the coordinator. The topology of the transaction is changed to reflect
the fact that the birth-site TM becomes a subordinate. Migration is used when
the coordinator has only a single subordinate, in which case the subordinate is
selected as the new coordinator. This corresponds to the common case of a
program accessing files at a remote file server. Migration is accomplished by the
coordinator (TM*) first requesting votes from its local servers. After they
respond, TM* sends a special variant of the vote request to the subordinate
(TMB), naming it as the new coordinator, and specifying if TM* needs to be
included in phase two of the commit protocol. TMB takes over the role of
coordinator, requesting votes from its participating servers and subordinate TMs.

Migration tends to locate the coordinator where the transaction’s shared,
recoverable resources are (e.g., at a file server), which reduces the probability of
a functioning server having to wait for a failed coordinator. When, as is often
the case, TM* has no two-phase participants in the transaction, coordinator
migration also saves a remote IPC request. However, the migrated coordinator is
still a single point of failure.

4.4.2 Coordinator Replication. For transactions in which the coordinator has
multiple subordinates, Quicksilver allows the coordinator to be replicated to
shorten the interval during which it is vulnerable to single-point failures. The
basic idea is to select a subset of the subordinates as backup coordinators, to use
a hierarchical two-phase commit protocol between the remainder of the subor-
dinates and the coordinators, and to use a special protocol among the coordina-
tors. In theory, one can use any number of replicas and any suitable protocol
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Recovery Management in QuickSilver l 97

(e.g., Byzantine agreement) among the replicas. Quicksilver uses a simple two-
way replication algorithm.

A coordinator TM* replicates itself by sending a special variant of the vote
request to a subordinate TMn. TMe then sends a vote request to TM*. This
partitions the transaction graph into two blocks, one composed of coordinator
TMB and its subordinates, and one composed of coordinator TMA and all its
other subordinates. TM* and TMs regard each other as their standby. TM* and
TMa then send vote requests to subordinates in their respective blocks, including
in the request the name of both coordinators. The following describes the protocol
from TMA’s standpoint; TMn behaves likewise. When all TMA’s participants and
subordinates have responded vote-commit, TM* forces a prepared log record
and then completes TMa’s vote request. When it is prepared and it has received
the completion of its vote request to TMB, it sends an end-commit request to
TMa. Upon receiving an end-commit request from TMe, TMA forces its commit
record and sends end-commit requests to its subordinates. When these requests
have been completed, TM* completes TMn’s end-commit request. When TMe
has completed TMA’s end-commit request, TM* writes its end record. If TMB
fails, then TMA aborts if it has not yet sent end-commit to TMa, otherwise it
remains prepared. If a coordinator fails, its subordinates contact the standby to
determine the outcome of the transaction.

The protocol blocks only if a failure occurs during the exchange of ready
messages (an exceedingly short interval in practice). The cost is the vote and
end requests from TMB to TM*, the prepared log record at TMA, and the
commit record at TMB.

5. LOGGING AND RECOVERY

Each node’s recovery manager contains a Log Manager (LM) component that is
used by TM to write its commit protocol log records and is also used by other
servers’ that manage recoverable data. Providing a common log for use by all
servers imposes conflicting goals of generality and efficiency on LM. If one were
to port a significant subsystem, such as a database manager, to Quicksilver, LM
is intended to be general enough to not force restructuring of the database’s
recovery architecture, and efficient enough to allow the database to run without
significant performance penalty.

Of these two goals, efficiency was the simpler to achieve. For example,
because of the use of a common log, servers can take advantage of TM’s log
forces to avoid doing their own during commit processing. Generality is more
difficult, as even a single database manager or file system contains many storage
structures, with different recovery techniques being most appropriate for each.
Rather than trying to impose a fixed set of recovery techniques on such servers,
LM offers a relatively low-level interface to an append-only log. This interface
provides a core set of services, including restart analysis, efficient access methods,
and archiving. On top of this interface, servers implement their own recovery

’ The log may in fact be used by any recoverable program (e.g., long-running applications), but to
simplify the text we will call any program that calls LM a “server”.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

98 l f?. Haskin et al.

algorithms and, in fact, drive their own recovery. This allows them to tailor their
recovery techniques to those most appropriate for the data they maintain.

5.1 Log Manager Interface

The log consists of a large, contiguous address space subdivided into 512-byte log
blocks. Each byte is addressable by a unique, 64-bit Eog sequence number (LSN).
The log is formatted into log records. Each log record contains an abbreviated
version of the recovery name used by servers to identify their log records, the
Tid, and the server’s data. Records may be of any length and can span any
number of log blocks. Records from different transactions and different servers
are freely intermixed in the log.

Before using the log, servers call LM to identify themselves, specifying their
recovery name and the optional log services they require (see below). The server
can then read, write, or force (synchronously write) records to the log. Write
and force return the record’s LSN.

A server can read records from the log in one of two ways: by providing the
actual LSN or, more commonly, by opening a scan on the log via a logical cursor.
A server can scan all its records, or just those of a particular transaction. LM
returns the data, the Tid, and the status of the transaction (e.g., Prepared,
Committed, Aborted). A server can read only valid records with its recovery
name. To locate a starting point for recovery, servers are provided access to the
log restart area. Servers typically save the LSN of a log checkpoint (see below) in
the log restart area.

5.2 Log Operation and Services

LM formats log records received from servers into log blocks and buffers them.
Buffered blocks are written to the nonvolatile online log either when buffer space
is exhausted or when a server (or TM) calls force. The online log is structured
as a circular array of blocks. Newly written blocks are written as the head of the
log; each newly written log block overlays the oldest previously existing block. If
that block still contains live data (i.e., data that is still needed by some server),
it is copied to a log archive from which it can still be read, although perhaps at a
performance penalty. Because the log is common to all servers, force causes all
previously written records from all servers to be written to nonvolatile storage.
TM exploits the common log to reduce the number of log forces during commit
processing. When a server responds to TM’s vote request, it specifies an LSN
that must be forced before the server can enter the prepared state. Thus the log
needs to be forced only once per transaction (by TM), regardless of the number
of servers writing log records.

TM and each server have a distinct log tail, which is the oldest record they will
need for crash recovery. When LM’s newly written log records approach a server’s
log tail, LM asks the server at its option to take a log checkpoint.” In response,
a server performs whatever actions are necessary (e.g., flushing buffers or copying
log records) to move its log tail forward in the log and thus avoid having to access
archived data during recovery.

lo Log checkpoints are distinct from transaction checkpoints, described in Section 3.5.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver l 99

When servers identify themselves to LM they define which optional log services
they require. Dependencies between options are minimized so that, where possi-
ble, servers are not penalized for log services they do not use, nor by log services
used by other servers. LM provides the following optional log services:

(1) Backpointers on log records. Servers that modify data in place need to
replay their records for aborted transactions. This can be done efficiently
by requesting LM to maintain backpointers on all log records written by
that server for each transaction.

(2) Block I/O access. Servers that write large amounts of log data can call a
set of library routines that allow them to preassign a contiguous range of
log blocks, construct their own log records in these blocks, and write them
as a unit, rather than calling LM for individual records. Since servers and
LM are in separate address spaces, servers must explicitly write their
preassigned blocks (i.e., they are not automatically written by TM log
forces). Crashes can therefore create “holes” in the physical log. LM bounds
the maximum contiguous range of preassigned blocks, and thus can rec-
ognize holes and skip over them during recovery. The holes will not affect
the logical log of the client, which will always be contiguous.

(3) Replicated logs. Servers managing essential data may require the log to
be replicated to guard against log media failure. LM supports log replication
either locally or to remote disk servers.

(4) Archived data. Log blocks are archived when the online log wraps around
on live data. This includes log records from inoperative servers (i.e., those
that have crashed and not yet restarted), records from servers that do not
support log checkpoints, and certain other records (e.g., records necessary
for media recovery, records of long-running transactions). Except for a
performance difference, the fact that a record is archived rather than in
the online log is transparent to a server reading the record. The archive is
stored in a compressed format so that only records containing live data are
stored. The archive may be replicated, either locally or to remote archive
servers.

5.3 Recovery

During recovery, LM scans the log starting with TM’s log tail. This analysis pass
determines the status (prepared, committed, aborted) of each transaction known
to TM at the time of the crash, and builds pointers to the oldest and newest
records for each such transaction written by each server. It also builds an index,
used to support scans, that maps each server’s log records to the blocks that
contain them.

At the completion of the analysis pass, LM starts accepting identify requests
from servers. At this point, servers begin their own recovery. In Quicksilver,
servers drive their own recovery by scanning the log and/or by randomly address-
ing log records. Scans may retrieve all records written by the server or only the
records written by a specific transaction. The server determines the number of
passes over the log and the starting position and direction of each pass, and
implements the recovery actions associated with the log records.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

100 l R. Haskin et al.

By remaining independent of the recovery protocol and by allowing servers to
drive their own recovery, the Quicksilver recovery manager potentially incurs a
higher cost during recovery than if it restricted the recovery protocols used by
clients and drove recovery from the contents of the log. We attempt to minimize
this cost in several ways. The index over the log maintained by LM allows it to
read only the blocks that actually contain a server’s data. The index, in associa-
tion with the directional information associated with log scans, allows LM to
prefetch data blocks in anticipation of the client’s read requests. Also, the LM-
maintained backpointers minimize the cost of backward scans. Finally, the results
of the LM analysis pass are made available to servers. For some three pass-
recovery protocols [14, 15, 331 the results of the TM’s recovery can be used to
simplify, or even to replace, the first pass of the protocol.

6. PERFORMANCE ANALYSIS

Table I summarizes the costs incurred by the Quicksilver recovery manager.
There is one column for each of the four commit protocols, One-Phase, Read
Only, Two-Phase Volatile, and Two-Phase Recoverable. The Cost per Transaction
is a fixed overhead that is incurred regardless of the number of participants or
the distribution. For rows in this section, and in the Cost per Subordinate section,
the protocol column is selected as the maximum of that node’s participant
protocols and its subordinate protocols. The Costper Subordinate rows show IPC
requests between TMs on different nodes, and commit protocol log writes at the
subordinate node. The protocols used between TMs are always two-phase.”

To allow comparison with other systems running on other hardware, Table II
shows the cost of the base operating system functions used by the recovery
manager. These (and all later benchmarks) were measured on RT-PC Model 25s
(about 2 RISC mips) with 4 megabytes of memory, IBM RT-PC token ring
adapters (4 megabit/set transfer rate), and M70 70 megabyte disks (5 megabit/
set transfer rate). Quicksilver, as well as all server and client processes, were
compiled with the PL.8 compiler [2]. TM uses short IPC messages, and LM uses
streamed writes. The table entries for lK-byte IPC messages and random-access
disk I/O will be used in later benchmarks. Remote IPC performance was measured
on a lightly loaded network, but because of the characteristics of the token ring,
performance does not degrade significantly until network load exceeds 50 percent.

Given these base system and I/O performance numbers, a series of benchmarks
was run to determine the actual overhead of the transaction and logging mecha-
nism. We used a set of benchmarks similar to those reported for Camelot in [36],
which, in addition to providing a way of determining the recovery management
overhead, allows a direct comparison of Quicksilver’s performance to that of at
least one other system under a similar set of conditions.

All benchmarks were run on otherwise unloaded machines, with an unloaded
network, a simplex log, and unreplicated coordinators. Each number in Table III

I’ Table I describes the case where the coordinator is not being replicated. The cost per transaction
increases by two remote IPC requests and two force log writes when the coordinator is replicated (see
Section 4.4.2).

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver - 101

Table I. Transaction Management Algorithmic Costs

Transaction Protocol

Cost per transaction One phase Read only
Two-phase

volatile
Two-phase
recoverable

Begin transaction
Commit/abort transaction

1 Local IPC 1 Local IPC 1 Local IPC 1 Local IPC
1 Local IPC 1 Local IPC 1 Local IPC 1 Local IPC

Log commit/abort record 0 0 0 1 Log force
Log end record 0 0 0 1 Log write

Cost per participant

Request vote 0 1 Local IPC 1 Local IPC 1 Local IPC
Commit/abort transaction 1 Local IPC 0 1 Local IPC 1 Local IPC

Cost per subordinate

Request vote -

Commit/abort transaction -
1 Remote IPC 1 Remote IPC 1 Remote IPC

0 1 Remote IPC 1 Remote IPC

Log prepare record 0 0 1 Log force
Log commit/abort record - 0 0 1 Log force
Log end record - 0 0 1 Log write

Table II. Primitive Operation Times in msecs.

Primitive operation Time

Local 32-byte IPC
Local lK-byte IPC
Remote 32-byte IPC
Remote lK-byte IPC
Average 512-byte streamed raw disk

I/O, including cylinder steps
Random-access 4096 byte I/O, read

or write

.66
1.16
9.0

16.0

2.3

37.5

is the per-transaction average over 4 runs, each run consisting of a batch of
4096 32-byte transactions or 512 lK-byte transactions. The write benchmarks
caused log checkpoints, and the time for these are included in the averages. As
in [36], the benchmark transactions were run serially from a single application,
and all service requests were synchronous, as the goal was to measure transaction
management overhead as opposed to response time or throughput.

The following benchmarks were run:

(1) Transactions on 1, 2, and 3 local servers that read or write one 32-byte
record. These demonstrate the basic overhead of local read and write trans-
actions, and the incremental cost of involving additional servers.

(2) Transactions on 1, 2, and 3 local servers that read or write ten 32-byte
records (as ten separate synchronous requests). These allow computing the
incremental costs of additional operations on servers from an existing trans-
action, which then allows computing the local per-transaction overhead,
including that of log forces for write transactions.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

102 - R. Haskin et al.

Table III. Benchmarks on l-4 RT-PCs. msecs/transaction

Transaction 1 2 3
benchmarks Server Servers Servers

Local reads
1 32-byte read/server

10 32-byte reads/server
1 lK-byte read/server

10 lK-byte reads/server
Local writes

1 32-byte write/server
10 32-byte writes/server

1 lK-byte write/server
10 lK-byte writes/server

Remote reads
1 32-byte read/server

10 32-byte reads/server
1 lK-byte read/server

10 lK-byte reads/server
Remote writes

1 32-byte write/server
10 32-byte writes/server

1 lK-byte write/server
10 lK-byte writes/server

6.1 8.7 11.2
14.1 24.1 35.2
6.6 9.6 12.6

18.7 33.8 48.9

41.7 41.7 42.4
58.4 92 125
41.7 50.8 66.9

119 181 239

31.9 45.5 58.8
121 224 329

38.1 57.9 77.5
183 348 515

77 101 122
201 325 447

80 124 152
335 533 725

(3) All of the above with lK-byte records.

(4) All of the above with the application on one node and each data server on a
separate node. This demonstrates the additional overhead for distributed
server requests and committing distributed transactions.

The numbers in Table III were used to derive the transaction management
costs shown in Table IV. For example, for local read-only transactions there is a
fixed overhead of 3.5 msec. and a per-server overhead of 1.7 msec. Comparing
these numbers with the numbers that can be derived from the primitive operation
times from Table II and the algorithmic operation costs from Table I allows one
to get a rough idea of the execution time of TM and LM. For example, simple
read transactions require two IPC requests (Begin and Commit) plus one IPC
request (Vote) for each of the n participating servers. This adds up to 1.32 +
.66n, so the execution time in TM is approximately 2.18 + 1.04n msec.

The equations for read transactions in Table IV closely match the benchmark
data points. The write transactions were more difficult to measure accurately.
Benchmark transactions were run serially, and were the only transactions run-
ning in the system. Because LM physically writes its log contiguously on the
disk, a complete revolution is missed between transactions, and transaction
execution is effectively synchronized to the disk rotation rate. Transactions
arriving at random times would see faster response time. It is also interesting to
note that if other log activity were occurring that allowed the log to “keep up”
with disk rotation, response times for small transactions could be much lower
than those observed in the benchmarks. To allow the CPU overhead of write
transactions to be observed independently of the effects of disk rotation,
Table V shows the results of repeating the local write benchmark with the
LM disk driver call changed from “write” to “no-op”.
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Recovery Management in QuickSilver l 103

Table IV. Approximate Elapsed Times in msecs of
Various Quicksilver Functions on the RT-PC

Quicksilver function Time

Cost/transaction for n servers
Local read-only
Local write
Remote read-only
Remote write

Cost/read operation
Local 32-byte
Local lK-byte
Remote 32-byte
Remote lK-byte

Cost/write operation
Local 32-byte
Local lK-byte
Remote 32-byte
Remote lK-byte

3.5 + 1.7n
31.0 + 4.211
18.5 + 3.6~~
53.0 + 7.3n

0.89
1.35
9.9

16.1

2.8
7.2

13.8
28.3

Table V. Local Write Transaction CPU Cost

Transaction 1 2 3
benchmarks Server Servers Servers

1 32-byte write/server 19.5
10 32-byte writes/server 43.1

1 lK-byte write/server 20.5
10 lK-byte writes/server 57.4

Quicksilver function

Cost/transaction for n servers
Local write

Cost/write operation
Local 32-byte
Local lK-byte

25.7 31.7
72.7 102
28.4 35.4

103 148

Time

13.2 + 4.2n

2.6
4.1

Table VI. Remote Read Transactions, 132-Byte

Asynchronous Read/Server, msecs/transaction

Number of servers Time (change vs. synch)

1 Server 32.0 (+0.3%)
2 Servers 37.5 (-17.6%)
3 Servers 42.9 (-27.0%)

Finally, it is important to point out that the raw performance numbers are
intended to he used to derive the per-transaction operational costs. They do not
exploit possible parallelism, and thus are not an indication of potential through-
put. To illustrate this, we repeated the benchmark for 32-byte remote read
transactions, but changed it to make asynchronous requests to the servers. The
results, with percent changes from Table III, are shown in Table VI. The slight
decrease in time for one node is due to the extra kernel calls to wait on the group
of requests. The fact that execution time grows with the number of servers shows
that parallelism is not perfect; all messages go to or from the client’s node, so
the network and the client node’s Communication Manager act as a bottleneck.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

104 l R. Haskin et al.

7. RELATED WORK

Several systems described in the literature use transaction-based recovery as a
lower-level component of a higher-level entity such as a file system or database.
For example, System R and R* [15, 191 implement relational databases that
support atomic transactions. Locus [26, 381 offers a transactional file system.

Other systems, such as Argus [211, Eden [301, Clouds [11, CPR [a], and Avalon
[16] implement programming languages that include constructs for recoverable
data objects built on top of a lower-level transaction-based recoverable storage
manager.

Camelot [36] (and its precursor TABS [34]) integrates transaction-based
recovery and write-ahead logging with virtual memory in a manner similar to
CPR, but uses software rather than special-purpose hardware to control access
to recoverable storage. Camelot offers recoverable storage in the context of a
standard programming language (C) via a macro package and library routines.
Camelot macros hide logging, recovery, and commit processing from servers that
manage recoverable resources. Applications start and end transactions and call
servers via Camelot macros that generate Mach RPC calls. Unlike Argus
and CPR (which support redo logging), Camelot implements both redo and
undo/redo logging. It also allows a choice of blocking or nonblocking commit
protocols, and supports nested transactions [25] in a manner similar to Argus.

The V-System [9] implements transactions on top of its process group facility
[10, 111. In V, transactions are implemented via a transaction library running as
part of the client process, a transaction log server, and data servers that manage
recoverable objects. Each transaction is represented by a process group. A client
calls the (possibly replicated) log server to create a transaction, adds each
transactional server it calls to the transaction’s process group, and passes the
transaction ID as a parameter to the server. The client multicasts prepare-to-
commit messages to the group, and when all respond affirmatively, calls the log
manager to commit the transaction.

While there is much in Quicksilver recovery management that is similar to
the aforementioned systems, Quicksilver differs from them in several significant
ways. The basic difference is the use of transactions as a unified recovery
mechanism for both volatile and recoverable resources. This motivated the
lightweight extensions to the commit protocol and is reflected in the low overhead
exhibited in the benchmarks. This also led to the fact that Quicksilver directly
exposes the recovery management primitives at a lower level than most compar-
able systems.” In particular, servers implement their own recoverable storage,
choose their own log recovery algorithms, and drive their own log recovery. In
addition to being more flexible and potentially more efficient for servers devel-
oped especially for Quicksilver, this approach also simplifies porting recoverable
services developed for other systems to Quicksilver by mapping their existing
recovery algorithms onto the corresponding Quicksilver primitives.

Another important difference is Quicksilver’s integration of recovery manage-
ment into IPC. There is no special “server call” mechanism for recoverable

I* Camelot offers a “primitive interface” that allows servers more direct control of their storage, but
encourages using the higher-level library.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver l 105

servers as in Camelot. This, plus the Quicksilver notion of system-created
“default” transactions, allows client programs written in conventional program-
ming languages to be completely unaware of the recovery mechanism and still
behave atomically. This greatly facilitates porting programs such as tile-process-
ing applications to Quicksilver. IPC automatically tracks server participation in
transactions, which eliminates the need for system calls to add servers to
transactions as in V [lo], and allows implementing the “re-vote” mechanism,
which itself eliminates the need for distinct “close” calls to servers to quiesce
them prior to initiating commit processing.

8. STATUS AND CONCLUSIONS

Quicksilver is installed and running in daily production use on 47 IBM RT-PC’s
in the computer science department at IBM Almaden Research Center and at
other IBM locations. In addition to the Quicksilver group, several other research
projects are using Quicksilver as an environment to develop applications and
network-based services. The recovery manager has been implemented and is
being used as the recovery mechanism for all Quicksilver servers.

The benchmarks described above showed that the recovery management over-
head is small. In the simple, normal case (i.e., the transaction commits, no
failures occur, and no re-vote is required), the recovery manager requires a
minimal number of messages, and CPU overhead is very small. Experience with
the system has confirmed that recovery management overhead is negligible and
not perceptible to users. We believe this shows that the mechanism is efficient
enough to be used for servers with very stringent performance demands.

We were concerned when we started the design of the recovery manager that
there would be exactly two types of users: simple servers, like the window manager
that just need a completion notification mechanism; and the file system, which
needs distributed two-phase commit in its full glory. In fact, we have found
transactions to be useful in a variety of applications, and have found the ability
to decouple commit coordination from logging and to use them individually to be
valuable as well. We mentioned several such cases: the replicated name server,
which uses commit coordination but not logging, and checkpointable applications,
which use logging but not the commit protocol. We are experimenting with other
applications, including a distributed messaging facility and a mail store-and-
forward system.

Development of the Quicksilver Distributed File Services (DFS) [71 confirmed
the use of server-defined recovery algorithms and server-driven recovery. The
approach taken by other systems of embedding all recovery processing within
the recovery manager simplifies programming servers. However, DFS pointed
out several shortcomings in this style of transparent recovery. Certain operations
on file system metadata require operation logging (e.g., B-tree inserts that may
provoke splitting the tree are undone/redone operationally to avoid locking large
subtrees). The DFS storage allocator, which uses a bitmap, implements its own
value logging and concurrency at the bit level, a granularity not to our knowledge
supported by any of the aforementioned recovery managers. Transaction check-
points were motivated by various DFS metadata updates (e.g., B-tree splits) that
are done on behalf of DFS internal transactions rather than client transactions

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

106 l R. Haskin et al.

to maximize concurrency and eliminate unnecessary undo operations after client-
transaction aborts. Checkpoints allow the updates to be logged and recovered
without the overhead of starting a new transaction for each one. Experience
seems to show that the log index, prefetch during scans, and a reasonable amount
of log buffer memory provide more than adequate recovery performance.

We intend to pursue development of the Quicksilver recovery manager in the
following areas:

(1) Deadlock Detection. As mentioned earlier, no work has been done on the
Deadlock Detection component of the recovery manager. We anticipate
beginning this work shortly.

(2) High-Performance Servers. The “block access” log interface reduces the
number of calls to the log manager, but causes sparser utilization of log
blocks and more log block writes. Considerably more performance analysis
is necessary to evaluate the benefit of block access for servers like the file
system that potentially log large amounts of data.

(3) Nested Transactions. Quicksilver presently does not include a nested
transaction mechanism. The utility of a mechanism such as that proposed
by Moss [25] is clear, and we intend to investigate implementing one.

(4) Recoverable Object Managers. Quicksilver’s recovery manager is in-
tended primarily as a tool for use by low-level servers, and as such trades
ease of use to gain flexibility and efficiency. However, we recognize the merit
of systems like Camelot and Argus that make it easy to define and use
recoverable objects. It is relatively straightforward to implement recoverable
object managers on top of the Quicksilver recovery primitives. We intend to
explore a language-directed facility for defining and using recoverable objects,
perhaps in the context of a language such as C++.

ACKNOWLEDGMENTS

We would like to thank Jim Wyllie and Luis-Felipe Cabrera, whose work on the
architecture and implementation of the Quicksilver Distributed File Services has
helped to drive the design of the recovery manager and has provided a testbed to
debug it.

REFERENCES

1. ALLCHIN, J. E., AND MCKENDRY, M. S. Synchronization and recovery of actions. In Proceedings
of the 2nd ACM Symposium on Principles of Distributed Computing (Montreal, Aug. 1983). ACM,
New York, 1983,31-44.

2. AUSLANDER, M., AND HOPKINS, M. An overview of the PL.8 compiler. In SIGPLAN ‘82
Symposium on Compiler Writing (Boston, Mass., June 1982). ACM, New York, 1982.

3. BARON, R. V., RASHID, R. F., SIEGEL, E. H., TEVANIAN, A., JR., AND YOUNG, M. W. MACH-
1: A multiprocessor oriented operating system and environment. In New Computing Enuiron-
ments: Parallel, Vector, and Systolic, SIAM, 1986,~~89.

4. BARTLETT, J. A Nonstop kernel. In ACM Proceedings of the 8th Symposium on Operating
Systems Principles (Pacific Grove, Calif. Dec. 1981). ACM, New York, 1981, 22-30.

5. BIRMAN, K. P. Replication and fault-tolerance in the ISIS system. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (Orcas Island, Wash., Dec. 1985). ACM, New
York, 1985,79-86.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Recovery Management in QuickSilver - 107

6. BORR, A. J. Transaction monitoring in Encompass: Reliable distributed transaction processing.
In Proceedings of the 7th International Conference on Very Large Data Bases (Cannes, France,
Sept. 1981), IEEE, New York, 1981,155-165.

7. CABRERA, L. F., AND WYLLIE, J. C. Quicksilver distributed file services: An architecture for
horizontal growth. IBM Res. Rep. RJ5578, Feb. 1987.

8. CHANG, A., AND MERGEN, M. F. 801 storage: Architecture and programming. ACM Trans.
Comput. Syst. This issue, 28-50.

9. CHERITON, D. R. The V kernel: a software base for distributed systems. IEEE Softw. 1,2 (April
1984), 19-42.

10. CHERITON, D. R. Fault-tolerant transaction management in a workstation cluster. Unpublished.
11. CHERITON, D. R., AND ZWAENEPOEL, W. Distributed process groups in the V kernel. ACM

Trans. Comput. Syst. 3,2 (May 1985), 77-107.
12. COOPER, E. C. Replicated distributed programs. In Proceedings of the 10th ACM Symposium

on Operating Systems PrincipZes (Orcas Island, Wash., Dec. 1985). ACM, New York, 1985,
63-78.

13. CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D. Atomic broadcast: From simple message
diffusion to Byzantine agreement. IBM Res. Rep. RJ5244, IBM, San Jose, Calif., July 1986.

14. GRAY, J. N. Notes on data base operating systems. In Operating Systems, An Advanced Course,
R. Bayer, R. M. Graham, and G. Seegmiiher, Eds. Springer-Verlag, New York, 1978, 393-481.
Also available as IBM Res. Rep. RJ2188, IBM Almaden Research Center, San Jose, CA 95120.

15. GRAY, J. N., MCJONES, P., BLASGEN, M. W., LORIE, R. A., PRICE, T. G., PIJTZOLU, G. F., AND
TRAIGER, I. L. The recovery manager of the System R database manager. Comput. Suru. 13, 2
(June 1981), 223-242.

16. HERLIHY, M. P., AND WING, J. M. Avalon: Language support for reliable distributed systems.
Tech. Rep. CMU-CS-86-167, Dept. of Computer Science, Carnegie Mellon Univ., Pittsburgh,
Pa., Nov. 1986.

17. INTERNATIONAL BUSINESS MACHINES. Systems Network Architecture Transaction: Program-
mer’s Reference Manual for LU Type 6.2, IBM Corporation GC30-3084.

18. LAMPSON, B. W. Atomic transactions. In Distributed Systems-Architecture and Zmplementa-
hon. Springer-Verlag, New York, 1981,246-264.

19. LINDSAY, B., HAAS, L., MOHAN, C., WILMS, P., AND YOST, R. Computation andcommunication
in R*: A distributed database manager. In Proceedings of the 9th ACM Symposium on Operating
Systems Principles (Bretton Woods, N.H., Oct. 1983). ACM, New York, 1983,1-10. Also available
as IBM Res. Rep. RJ3740, IBM, San Jose, Calif., Jan. 1983.

20. LINDSAY, B. G., SELINGER, P. G., GALTIERI, C., GRAY, J. N., LORIE, R. A., PRICE, T. G.,
PUTZOLU, F., TRAIGER, I. L., AND WADE, B. W. Single and multi-site recovery facilities. In
Distributed Data Bases, I. W. Draffan and F. Poole, Eds. Cambridge University Press, Cambridge,
UK, 1980. Also available as Notes on Distributed Databases, IBM Res. Rep. RJ2571, IBM, San
Jose, Calif., July 1979, 44-50.

21. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, distri-
buted programs. ACM Trans. Program. Lang. Syst. 5, 3 (July 1983), 381-404.

22. LYON, B., AND SAGER, G. Overview of the SUN network file system. SUN Microsystems, Inc.,
Mountain View, Calif., Jan. 1985, l-8.

23. MOHAN, C., LINDSAY, B., AND OBERMARCK, R. Transaction management in the R* distributed
database management system. ACM Trans. Database Syst. 11, 4 (Dec. 1986), 378-396. Also
available as IBM Res. Rep. RJ5037, IBM, San Jose, Calif., Feb. 1986.

24. MOHAN, C., STRONG, H. R., AND FINKELSTEIN, S. Method for distributed transaction commit
and recovery using Byzantine agreement within clusters of processors. In Proceedings of the 2nd
ACM Symposium on Principles of Distributed Computing (Montreal, Aug. 1983). ACM, New
York, 1983,89-103. Also IBM Res. Rep. RJ3882.

25. MOSS, E. B. Nested Transactions: An Approach to Reliable Distributed Computing, MIT Press,
Cambridge, Mass., 1985.

26. MOLLER, E. T., MOORE, J. D., AND POPEK, G. J. A nested transaction mechanism for LOCUS.
In Proceedings of the 9th ACM Symposium on Operating System PrincipZes (Bretton Woods,
N.H., Oct. 1983). ACM, New York, 1983, 71-89.

27. OBERMARCK, R. Distributed deadlock detection algorithm. ACM Trans. Database Syst. 7, 2
(June 1982), 187-208.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

108 - FL Haskin et al.

28. OKI, B., LISKOV, B., AND SCHEIFLER, R. Reliable object storage to support atomic actions. In
Proceedings of the 10th ACM Symposium on Operating Systems Principles (Orcas Island, Wash.,
Dec. 1985). ACM, New York, 1985, 147-159.

29. POPEK, G., WALKER, B., CHOW, J., EDWARDS, D., KLINE, C., RUDISIN, G., AND THIEL,
G. LOCUS: A network transparent high reliability distributed system. In Proceedings of the 8th
ACM Symposium on Operating Systems PrincipZes (Pacific Grove, Calif., Dec. 1981). ACM, New
York, 1981, 169-177.

30. Pu, C., NOE, J. D., AND PROUDFOOT, A. Regeneration of replicated objects: A technique and
its Eden implementation. In Proceedings of the 2nd International Conference on Data Engineering,
(Los Angeles, Feb. 1986). IEEE Press, New York, 1986, 175-187.

31. RASHID, R., AND ROBERTSON, G. Accent: A communication oriented network operating system
kernel. In Proceedings of the 8th ACM Symposium on Operating Systems Principles (Pacific
Grove, Calif., Dec. 1981). ACM, New York, 1981,64-75.

32. REED, D., AND SVOBODOVA, L. SWALLOW: A distributed data storage system for a local
network. In Networks for Computer Communications, North-Holland, Amsterdam, 1981, 355-
373.

33. SCHWARZ, P. M. Transactions on Typed Objects. Ph.D. Dissertation, Carnegie-Mellon Univ.,
Pittsburgh, Pa., Dec. 1984. Available as CMU Tech. Rep. CMU-CS-84-166.

34. SPECTOR, A. Z., BUTCHER, J., DANIELS, D. S., DUCHAMP, D. J., EPPINGER, J. L., FINEMAN,
C. E., HEDDAYA, A., AND SCHWARZ, P. M. Support for distributed transactions in the TABS
prototype. IEEE Trans. Softw. Eng. SE-II, 6 (June 1985), 520-530.

35. SPECTOR, A. Z., DANIELS, D., DUCHAMP, D., EPPINGER, J., AND PAUSCH, R. Distributed
transactions for reliable systems. In Proceedings of the ZOth ACM Symposium on Operating
Systems Principles (Orcas Island, Wash., Dec. 1985. ACM, New York, 1985, 127-146.

36. SPECTOR, A., ET AL. Camelot: A distributed transaction facility for Mach and the internet-an
interim report. Tech. Rep. CMU-CS-87-129, Dept. of Computer Science, Carnegie Mellon Univ.,
Pittsburgh, Pa., June 1987.

37. STONEBRAKER, M. Operating systems support for database management. Commun. ACM 24, 7
(July 1981), 412-418.

38. WEINSTEIN, M. J., PAGE, T. W., LIVEZEY, B. K., AND POPEK, G. J. Transactions and synchro-
nization in a distributed operating system. In Proceedings of the 10th ACM Symposium on
Operating Systems Principles (Orcas Island, Wash., Dec. 1985). ACM, New York, 1985, 115-126.

Received May 1987; revised May 1987; accepted September 1987

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

