Terra: A Virtual Machine-Based Platform for Trusted Computing by Garfinkel et al.

(Some slides taken from Jason Franklin’s 712 lecture, Fall 2006)
Trusted Computing Hardware

• What can you do if you have “trusted” hardware?
 – Immutable, with deep control over the resulting behavior of the machine
 – Can use to guarantee certain behaviors and properties of the machine

• How can you do it?
 – Practically?
 – With legacy O/S and applications?
Primitives of Trusted Computing

• Attestation
 – “I’m running what you think I’m running”

• Secure boot
 – “I can only run what is OK”
 – Less popular approach -- privacy/usability/monopoly concerns

• Note lots of policy/social/legal ?s
 – Can be useful tool
 • e.g., dga’s distributed testbed
 • Prevent bots from hijacking bank session
 – Can be used for evil (DRM, lock-in, etc.)
 • “Sorry, can only play this CD under windows!”
Trusting Software

Code attestation enables us to establish trust in a remote platform.
Attestation Today

• TCG (formerly known as TCPA) goal is to add secure platform primitives to each client (now the focus is also on servers, cell phones, PDAs, etc.)
• Industry consortium by AMD, IBM, Intel, HP, Microsoft, …
• These secure platform primitives include
 – Platform integrity measurements
 – Measurement attestation
 – Protected storage
 – Sealed storage
• These can be used to provide trusted boot
• Provides attestation, which enables an external verifier to check integrity of software running on host
 – Goal: ensure absence of malware; detect spyware, viruses, worms …
Hardware Attestation Functions

• Starts from the bottom
 – Hash the firmware, bootstrap loader, OS, etc.
 • TPM can sign these with secret key (hardware protected)
• Trusted boot / remote attestation
 – Attest to value of integrity measurements to remote party
• Protected storage
 – Provide “secure” data storage (think smartcard)
 – Secure storage for private key K^{-1}_{TPM}
 – Manufacturer certificate, for example $\{K_{TPM}\}_{K^{-1}_{IBM}}$
• Sealed storage
 – Unlock state under a particular integrity measurement
Terra Argument

• Need to deploy secure systems with commodity computing systems

• Commodity systems (hardware and software) impose “fundamental limitations” on security
 – Poor isolation between applications (processes)
 – Weak mechanisms to authentication applications to peers (distributed computing)
 – No trusted paths between users and trusted computing base (TCB)
Two Worlds

Open Box

Closed Box
Two Worlds

• Open Box
 – General-purpose
 – Extensible
 – Runs huge body of existing code
 – Economies of scale
 – Rich functionality
 – Few security guarantees

• Closed Box
 – Hardware tamper-resistance
 – Embedded cryptographic keys
 – Higher assurance than open box
Uniting Two Worlds with a TVMM

• Trusted virtual machine monitor (TVMM) “partitions a single tamper-resistant, general-purpose platform into multiple isolated virtual machines”
Trusted Computing and Closed-box VMs

- Terra’s Goal: make closed-box VMs equivalent to dedicated hardware and software of closed-box platforms
 - While still allowing open-box VMs
 - And do it all on general purpose hardware
- TVMM protects privacy and integrity of closed-box VM’s contents
 - Applications inside closed-box VM can redefine software stack to suit application
- TVMM can authenticate the contents of a closed-box VM (attestation)
Assumptions

• Assume VMM is free of software vulnerabilities (i.e., trusted)
• Hardware support required
 – Hardware attestation
 • Like the Trusted Computing Group’s (TCG’s) Trusted Platform Module (TPM)
 – Sealed Storage
 • Decryption (unseal) of data (storage) only possible in same state as during encryption (sealing)
 – Hardware support for virtualization (optional)
 • Intel VT or AMD Pacifica
 – Hardware support for secure I/O (trusted path)
 – Secure counter (optional)
 • Increment only counter
 – Device isolation
 • Countering “attacks from below” by DMA
 – Real-time support
 – Tamper-resistant hardware (not disk but CPU, memory, etc.)
TVMM Revisited

TVMM provides standard VMM properties:

– Isolation
 • Each VM runs in own hardware protection domain

– Extensibility
 • VM is a dedicated platform

– Efficiency
 • Negligible virtualization overhead

– Compatibility
 • Zero modifications required to run commodity OSs

– Security
 • Small code size, narrow/stable/well-defined interface (like drivers?)
TVMM Revisited

- TVMM only capabilities:
 - Root secure
 - Security against tampering by root user
 - Attestation
 - Hey peer! What code are you running?
 - Trusted path (unimplemented)
 - Direct to the TCB communication channel with guarantees of data authenticity, secrecy, and integrity
Local Security Model

- Two components: **TVMM** and **management VM**
 - TVMM runs at the highest privilege level and is secure against tampering by administrator (root secure)
 - TVMM dictates policy for attestation (all other policy decisions made by management VM)
 - TVMM cannot guarantee availability
 - Management VM
 - Formulates all platform access control and resource management policies
 - Grants access to peripherals, issues CPU and memory limits, etc.
 - Management VM run by platform owner
 - Security guarantees of the TVMM cannot depend on management VM
Application Assurance

• Commodity OS kernels
 – Poor assurance, easily compromised
 – Difficult to reason about isolation
 – Platform security equivalent to security of most vulnerable component

• Terra provides:
 – Strong isolation between VMs
 – Ability to run application-specific OS
 – Attestation to ensure applications only interact with trusted peers

• Assurance of Terra is equivalent to assurance of the OS (TVMM)
Distributed Computation
TCG Trusted Platform Module (TPM)

I/O

Random Number Generator

Secure Hash SHA-1

Key Generation

Crypto RSA

Platform Configuration Register (PCR)

Non-Volatile Storage (EK AIK, SRK)

LPC bus

DIP Packaging or integrated into SuperIO chip
Basic TPM Functionality

- TPM contains 16 program configuration registers (PCRs) to store integrity measurements
- Operations on PCRs
 - $\text{TPM}_\text{Extend}(N, S): \; \text{PCR}_N = \text{SHA-1}(\text{PCR}_N \parallel S)$
 - $\text{TPM}_\text{Read}(N): \; \text{Return contents of PCR}_N$
- TPM contains private key to sign attestations and manufacturer certificate
 - Tamper resistant storage for private key K^{-1}_TPM
 - Manufacturer certificate, for example $\{K_{\text{TPM}}\}K^{-1}_\text{IBM}$
Ahead-of-Time (offline) Attestation
Ahead-of-Time (offline) Attestation
Application – Trusted Quake

- Quake – multi-player online game vulnerable to client cheating

- Terra provides:
 - Secure communication
 - Client integrity
 - Server integrity
 - Isolation

- Terra can’t prevent:
 - Bugs and undesirable features
 - DoS attacks
 - Covert channels
Discussion

• Limited TVMM implementation
 – Do not emulate underlying TCPA hardware (no TPM)
 – No trusted path (lack of hw)
 – Bulky TVMM (VMware GSX Server)
 – No high assurance guarantees (Debian/VMware)
• Some experiences implementing trusted quake and trusted access points
• Tons of discussion and material, much of it based on yet unreleased or alpha technologies
• Lots of we’re sorry but we…
 – Don’t have special hardware
 – Didn’t have source code
 – Didn’t implement this or that
• Great deal of foresight into future technologies
• Trusted computing technologies are a available today
 – Terra could be realized almost as predicted
Open Research ?s

• How to build secure systems using TPM?
 – Attestation is potentially ugly!
 • Must attest/trust every version of windows with every combination of patches?!
 • Or do you force WinXP sp2 with IE7 and patches 1, 5, 9, 10?
 – Alternate approch: Gun Sirer’s “Nexus” OS
 • Labels that attest to properties
 – e.g., “Media player will not copy; will allow only N plays of video”
 – Media can be played by any player that makes those guarantees (some cert. auth. has to sign for them...)
– This is ongoing research
 • Definitely don’t know the answers yet!

• What does TPM let us do differently?
 – Where would you draw security bounds differently?
 – How much trust should you export to “trusted” client?
 • Still vulnerable to...
 – maybe: Rogue DMA hardware? RDMA network card??
 – bus analyzer? CPU interposer?
 – government/org. crime with STEM?
Examples to consider

- Fairness / congestion control in networks (most people don’t care enough to break; rewards small)
- DDoS prevention (hardware owner probably doesn’t want computer being used to launch DDoS)
- Virus scanning (benefits owner of computer)
- Cheating prevention in games (stakes aren’t that high...)
- Secure RDMA-like access to NFS with access control performed by trusted local proxy (earlier papers)
- Updating bank balance / securely handling e-cash
- Voting?
- Where to draw the line between {on trusted server, on trusted client, on untrusted client}? What changes?
Building Secure Distributed Systems

• **Challenge:** Build trustworthy service based on distributed set of potentially untrusted hosts

• **Approaches**
 – Software security community has proposed mechanisms to harden software to prevent exploits [Prevention]
 – Intrusion detection community has proposed mechanisms for detecting specific attacks or anomalies [Detection and Recovery]
 – Distributed systems community has designed protocols to provide property if up to 1/3 of hosts are compromised (Byzantine hosts) [Resilience]

• **Attestation**
 – Provide guarantee that correct code is executing on remote host
 – Vendors embed trusted HW in devices providing attestation
 – Exciting new directions for building secure systems