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Microkernels & Database OSs

• Stonebraker81

– OS/FS in the way of 
smarter DBMS, & besides, 
DBMS is an OS anyway

• Accetta86: Mach

– Rapid development and 
customization of OS 
hampered by bundling of 
most services in OS core

– Core should be messaging 
(IPC = LPC + RPC), 
threads, HW mgmt only

– e.g.: Mac OS X is 
Mach 2.5 + FreeBSD 4

– Virtual Machine Hypervisor 
is current vision

Very different philosophies

• Database folks:

– OS, get out of the way!

– Want raw access to everything, “we can do it better”

• Exokernel folks:

– Get the OS out of the way!

• Microkernel folks:

– Get the OS functions into user-space out of kernel trust domain

– Sometimes with an eye towards extensibility, sometimes not

• QuickSilver folks:

– Transactions as the basis for everything for safe, easy multi-

node scaling

– Emph:  This is a distributed OS! 3

DB folks:  Stonebraker81

• “Operating System Support for Database 

Management”, M. Stonebraker, CACM 24(7) 1981

• OSes do

– Buffer pool mamagement

– File system / layout / etc. (and buffering)

– Scheduling

– Virtual memory / paging / swapping

• Consider buffer mgmt (like in Exokernel argument)

– OS provides ~LRU buffer mgmt

– Prefetching for sequential access

– Transparent (sometimes controllable - madvise)
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Multiple Buffering

• DB maintains its own buffer cache

– Often knows better what will be ‘hot’ - e.g., 

internal B-tree nodes, etc.  May know what it 

will need to re-visit during query.

• Replacement policy mismatch

– Sequential scan:  MRU/Random >> LRU 

sometimes

– Looping scan:  fix N (as many as can) pages

– Biased random accesses:  LRU
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Prefetching?

• OS’s only guess:  sequential

– Wasted effort

– Prefetched pages may kick out cached, useful 

ones!

• But DB usually knows what it wants next
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Crash Recovery

• Saw last time interaction between buffer 

mgmt and recovery

– DB may want control over buffering/eviction to 

make recovery simpler

– DB does need control over forcing data to disk

• At least for the log

• Must control order of physical writes to disk for 

atomicity
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QuickSilver is Distributed DB-OS

• OS Transactions (atomicity)

– OS (nonDB too) services in 
transactions (Tid) defined by 
(reliable, inorder) messaging

– Incl. window mgmt, virtual 
terminal service, nameservice 
& other less-durable services 
than DB, FS

– Worry about overhead
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Arguments for transactions

• Timeouts are hard to program

– Complicated client logic

– Too long - slow recovery;  too short - false crash 

detection.  Slow server vs crash?  Quick-response 

heartbeats + timeouts?  starting to get complicated.

• Want uniform recovery code

• Stateless services are too constraining;  some 

actions can’t be made idempotent (e.g., locks)
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Examples

• Saving a file atomically in an editor (no 

temporary file;  no need for link-rename 

tricks)

• Compiling - either .o file is complete, or 

doesn’t exist, despite failure of other nodes 

involved in compilation

• Easier dist FS operation -- separate 

metadata/data servers, etc.
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This is complex

• Transaction could cross multiple serviers

– That’s the whole point! :)  Need 2-phase 

commit

– Recursive transactions -- server issues RPCs in 

order to serve client

– Some servers can’t provide 2PC - “volatile” 

state may be lost (window state, etc.) across 

reboot.
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Quicksilver Recovery

• Transaction Manager

– Primary focus of paper is distributed commit for atomicity of 
complex distributed operations in OS

– Specialized to lighterweight/less-durable services to save overhead

• Log Manager

– General service for write-ahead logging, used by commit 
processing & each service’s recovery scheme, archived if full

– Intermingled for all services on a node, group commit by Tid

• Deadlock Detector

– Detect resource deadlock via lock cycles & abort some transaction

– Not implemented as OS generally doesn’t (ad hoc isolation)

• Serializability is rarely part of OS too, left to application services

• Connection Manager

– Provides exactly once, src-dest in-order delivery of IPC/RPC 
(synch=original RPC, asynch=polling/callback, message=1-way)



Classes of Services

• Recoverable (traditional)

– Classical DB services, file systems using transactions

• Volatile/non-durable (lightweight)

– Simple services whose state does not survive failure

– Window or virtual terminal manager

• Replicated, volatile/non-durable

– Recovery done with pure replication, with custom recovery 
protocols, and slow all-failed recovery

– Failure of one of these services does not necessarily fail 
transaction

• Long running app “services”

– Checkpoint services for app restartability

• Servers declare as stateless, volatile or recoverable

Distributed Transaction Commit

• Basic idea: 2 phase commit

– Root/coordinator initiates 

commit processing with vote 
requests through graph

– Each node does its own 
logging as needed, propagates 

voting & waits for all child 

nodes to vote before it 

becomes “prepared” and votes

– When root is prepared, result 

is determined (phase 1)

– Result is communicated in 

“end” round (phase 2), 

triggering UNDO if result is 
abort & terminating 

transaction when all have 

accepted result

– note hang in phase 1 if 

coordinator is partitioned

Failures

• Participant before prepare:

– Likely abort (it hasn’t sync’d volatile state)

– After prepare, before end-commit:

• When rebooted, must find out final status and either REDO or UNDO - can do 

so b/c state was saved

• TM?  Uhh.  Guess it better restart
• Tx probably aborts then

• “Coordinator failure ... can cause resources to be locked indefinitely.”  (ow)

• Coordinator migration: clients are least reliable nodes for coordinator

– Rotate graph so more appropriate (fault tolerant, stateful) node is coordinator

• Coordinator replication

– Coordinator is single point of failure for service commit

– Can interpose mirror processing for replicating coordinator to reduce risk
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Commit Specializations
• 1 phase commit services

– Simple volatile services get only 1 message: end

• Truncated 2nd phases based on vote

– Commit-RO if nothing to recover & no interest in 2nd phase

• Transaction graph cycles

– First invocation votes for real, rest give Commit-RO

• Transactions continuing after commit

– Real systems have timeout, poll, user input etc messaging that are not 

stateful/part of last transaction; cannot cause abort (always votes yes)

– These requests are identified & allowed after commit starts; otherwise 

subsequent “voting” of committed transaction is to abort subsequent work
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Eval

• Describes a real system in detail; an experience report 

mostly

– On the cusp of acceptable in 1988, but this is a big, novel system 

so it got slack

• Small amount of microbenchmark measurements

– Hard to do better without accepted benchmarks, but that is the 

standard today

– Notice how expensive the transaction-based services are relative to 

underlying OS services -- distributed database services are usually 

avoided if possible because of this -- generality and uniformity are 

not compelling enough

?s

• Structuring everything this way:  heavy!

• Are there non-transactional services?

– Window manager?

– Output to user?  Input from user?  Network 

traffic to/from external hosts?

• Effect on software?  What do clients and 

servers have to do differently?  Is it likely to 

meet goal of reducing recovery code?  Is it 

actually useful?
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Three Phase Commit (non-blocking)

• Skeen83

• Blocking case 

is coordinator

partition after 

begin-commit

– Add another

phase for

“all have

agreed”

– Stuck in 

w2 can

timeout &

abort

– extra messaging!
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