
Recovery Management in 

QuickSilver.

  Haskin88:   Roger Haskin, Yoni Malachi, Wayne 

Sawdon, Gregory Chan, ACM Trans. On Computer 

Systems, vol 6, no 1, Feb 1988.

Microkernels & Database OSs

• Stonebraker81

– OS/FS in the way of 
smarter DBMS, & besides, 
DBMS is an OS anyway

• Accetta86: Mach

– Rapid development and 
customization of OS 
hampered by bundling of 
most services in OS core

– Core should be messaging 
(IPC = LPC + RPC), 
threads, HW mgmt only

– e.g.: Mac OS X is 
Mach 2.5 + FreeBSD 4

– Virtual Machine Hypervisor 
is current vision

Very different philosophies

• Database folks:

– OS, get out of the way!

– Want raw access to everything, “we can do it better”

• Exokernel folks:

– Get the OS out of the way!

• Microkernel folks:

– Get the OS functions into user-space out of kernel trust domain

– Sometimes with an eye towards extensibility, sometimes not

• QuickSilver folks:

– Transactions as the basis for everything for safe, easy multi-

node scaling

– Emph:  This is a distributed OS! 3

DB folks:  Stonebraker81

• “Operating System Support for Database 

Management”, M. Stonebraker, CACM 24(7) 1981

• OSes do

– Buffer pool mamagement

– File system / layout / etc. (and buffering)

– Scheduling

– Virtual memory / paging / swapping

• Consider buffer mgmt (like in Exokernel argument)

– OS provides ~LRU buffer mgmt

– Prefetching for sequential access

– Transparent (sometimes controllable - madvise)
4



Multiple Buffering

• DB maintains its own buffer cache

– Often knows better what will be ‘hot’ - e.g., 

internal B-tree nodes, etc.  May know what it 

will need to re-visit during query.

• Replacement policy mismatch

– Sequential scan:  MRU/Random >> LRU 

sometimes

– Looping scan:  fix N (as many as can) pages

– Biased random accesses:  LRU
5

Prefetching?

• OS’s only guess:  sequential

– Wasted effort

– Prefetched pages may kick out cached, useful 

ones!

• But DB usually knows what it wants next

6

Crash Recovery

• Saw last time interaction between buffer 

mgmt and recovery

– DB may want control over buffering/eviction to 

make recovery simpler

– DB does need control over forcing data to disk

• At least for the log

• Must control order of physical writes to disk for 

atomicity

7

QuickSilver is Distributed DB-OS

• OS Transactions (atomicity)

– OS (nonDB too) services in 
transactions (Tid) defined by 
(reliable, inorder) messaging

– Incl. window mgmt, virtual 
terminal service, nameservice 
& other less-durable services 
than DB, FS

– Worry about overhead

–



Arguments for transactions

• Timeouts are hard to program

– Complicated client logic

– Too long - slow recovery;  too short - false crash 

detection.  Slow server vs crash?  Quick-response 

heartbeats + timeouts?  starting to get complicated.

• Want uniform recovery code

• Stateless services are too constraining;  some 

actions can’t be made idempotent (e.g., locks)

9

Examples

• Saving a file atomically in an editor (no 

temporary file;  no need for link-rename 

tricks)

• Compiling - either .o file is complete, or 

doesn’t exist, despite failure of other nodes 

involved in compilation

• Easier dist FS operation -- separate 

metadata/data servers, etc.

10

This is complex

• Transaction could cross multiple serviers

– That’s the whole point! :)  Need 2-phase 

commit

– Recursive transactions -- server issues RPCs in 

order to serve client

– Some servers can’t provide 2PC - “volatile” 

state may be lost (window state, etc.) across 

reboot.

11

Quicksilver Recovery

• Transaction Manager

– Primary focus of paper is distributed commit for atomicity of 
complex distributed operations in OS

– Specialized to lighterweight/less-durable services to save overhead

• Log Manager

– General service for write-ahead logging, used by commit 
processing & each service’s recovery scheme, archived if full

– Intermingled for all services on a node, group commit by Tid

• Deadlock Detector

– Detect resource deadlock via lock cycles & abort some transaction

– Not implemented as OS generally doesn’t (ad hoc isolation)

• Serializability is rarely part of OS too, left to application services

• Connection Manager

– Provides exactly once, src-dest in-order delivery of IPC/RPC 
(synch=original RPC, asynch=polling/callback, message=1-way)



Classes of Services

• Recoverable (traditional)

– Classical DB services, file systems using transactions

• Volatile/non-durable (lightweight)

– Simple services whose state does not survive failure

– Window or virtual terminal manager

• Replicated, volatile/non-durable

– Recovery done with pure replication, with custom recovery 
protocols, and slow all-failed recovery

– Failure of one of these services does not necessarily fail 
transaction

• Long running app “services”

– Checkpoint services for app restartability

• Servers declare as stateless, volatile or recoverable

Distributed Transaction Commit

• Basic idea: 2 phase commit

– Root/coordinator initiates 

commit processing with vote 
requests through graph

– Each node does its own 
logging as needed, propagates 

voting & waits for all child 

nodes to vote before it 

becomes “prepared” and votes

– When root is prepared, result 

is determined (phase 1)

– Result is communicated in 

“end” round (phase 2), 

triggering UNDO if result is 
abort & terminating 

transaction when all have 

accepted result

– note hang in phase 1 if 

coordinator is partitioned

Failures

• Participant before prepare:

– Likely abort (it hasn’t sync’d volatile state)

– After prepare, before end-commit:

• When rebooted, must find out final status and either REDO or UNDO - can do 

so b/c state was saved

• TM?  Uhh.  Guess it better restart
• Tx probably aborts then

• “Coordinator failure ... can cause resources to be locked indefinitely.”  (ow)

• Coordinator migration: clients are least reliable nodes for coordinator

– Rotate graph so more appropriate (fault tolerant, stateful) node is coordinator

• Coordinator replication

– Coordinator is single point of failure for service commit

– Can interpose mirror processing for replicating coordinator to reduce risk

15

Commit Specializations
• 1 phase commit services

– Simple volatile services get only 1 message: end

• Truncated 2nd phases based on vote

– Commit-RO if nothing to recover & no interest in 2nd phase

• Transaction graph cycles

– First invocation votes for real, rest give Commit-RO

• Transactions continuing after commit

– Real systems have timeout, poll, user input etc messaging that are not 

stateful/part of last transaction; cannot cause abort (always votes yes)

– These requests are identified & allowed after commit starts; otherwise 

subsequent “voting” of committed transaction is to abort subsequent work

–



Eval

• Describes a real system in detail; an experience report 

mostly

– On the cusp of acceptable in 1988, but this is a big, novel system 

so it got slack

• Small amount of microbenchmark measurements

– Hard to do better without accepted benchmarks, but that is the 

standard today

– Notice how expensive the transaction-based services are relative to 

underlying OS services -- distributed database services are usually 

avoided if possible because of this -- generality and uniformity are 

not compelling enough

?s

• Structuring everything this way:  heavy!

• Are there non-transactional services?

– Window manager?

– Output to user?  Input from user?  Network 

traffic to/from external hosts?

• Effect on software?  What do clients and 

servers have to do differently?  Is it likely to 

meet goal of reducing recovery code?  Is it 

actually useful?
18

Three Phase Commit (non-blocking)

• Skeen83

• Blocking case 

is coordinator

partition after 

begin-commit

– Add another

phase for

“all have

agreed”

– Stuck in 

w2 can

timeout &

abort

– extra messaging!
19


