
Concurrency Control & Recovery

 Haeder83: Theo Haerder, Andreas Reuter, ACM

Computing Surveys,

vol 15, no 4, Dec 1983.

DB Goals

• Concurrency Control:

– Individual users see consistent states

• Even though ops for many users may be interleaved

• Recovery:

– Database is fault-tolerant

• State not corrupted from software, system, media failure

• Why?

– Write apps w/out explicit concern for either

• All about programmer productivity, safety, etc.
2

Transactions

• Multiple users manipulating data safely

• ACID properties of a transaction

– Atomicity: transform is all or nothing

– Consistency: make only correct changes

• Often expressed as declarative integrity constraints

– “Salary of grad student cannot exceed min. wage/2”

– Isolation: partial changes hidden from others

• Pretend that yours is the only Tx running

– Durability: committed changes survive subsequent failures

• AID provided by DBMS, C by programmer

– DB is consistent iff contents result only from successful transactions;

– Rest of C requires run-time triggers, etc. - ignore for now.

Std. example - Durability

• Transfer()

– A_bal = Read(A)

– A_bal -= 50

– Write(A, A_bal)

– B_bal = Read(B)

– B_bal += 50

– Write(B, B_bal)

• Those are underlying ops actually performed. In SQL, could be expressed as:

– update accounts set balance=balance-50 where

user=’A’

– update accounts set balance=balance+50 where

user=’B’

– But same challenges apply...

4

If Crash: $50 disappears!

Isolation

• ReportSum()

– A_bal = Read(A)

– B_bal = Read(B)

– printf(“Riches: %d\n”, A_bal + B_bal);

• But consider interleaving:

5

• Transfer()

– A_bal = Read(A)

– A_bal -= 50

– Write(A, A_bal)

– B_bal = Read(B)

– B_bal += 50

– Write(B, B_bal)

• ReportSum()

– A_bal = Read(A)

– B_bal = Read(B)

– printf(“Riches: %d\n”, A_bal

+ B_bal);

prints $250

prints $300

Why diff from filesystems?

• Both isolation and fault tolerance

– Most filesystems don’t provide isolation

• App must explicitly lock/etc.

– Many don’t provide guaranteed recovery

• Some - ext2 - don’t even guarantee that the FS itself

will be usable after a crash. (!)

• Powerful combination

– But also very complex and w/high overhead

– Reasonable - FS is more general, etc.

– And DBs let you pick...
6

Context: SQL, etc

• Single statements that affect multiple data objects
– UPDATE grades set grade=grade+1;

– Can be quite hairy -- conditionals, format conversion, etc.

• BEGIN TRANSACTION
– insert into grades VALUES (“dave”, “F”)

• COMMIT TRANSACTION

• Likely used by procedural language driving the transaction

– But same machinery needed to make individual

statements atomic!

• For perf: Can often select isolation level / read-only tx

– Can also just LOCK TABLE (to avoid row-level locks

and transaction overhead)

7

Failures

• Transaction failure

– Code aborts, based on input/database inconsistency
[programmer escapes complexity]

– Mechanical aborts caused by concurrency control solutions to
isolation

– Frequent events, “instant” recovery needed

• System failure (fail-stop)

– DBMS bug, OS fault, HW failure: wipe out volatile memory
but durable memory (disk) survives

– Infrequent events, “minutes” to recover

• Media failure (fail-stop)

– IO code bugs, disk HW failures: loss of disk info

– Rare events, “hours” to recover from checkpoints & audit logs

• Note not talking about corruption (

Recoverable System Model

• UNDO: rollback
aborted transaction

– Transaction (transaction
failure) or global (system
failure)

– Employs short term log

• REDO: repeat complete
transaction on old DB
data

– Partial (system failure)
or global (media failure)

– Employs long term
history log (tape)

15-712, Fall 2003, Greg Ganger 10

Tools for protecting internal consistency

! static mappings
" if they don’t change, they don’t cause problems
" most people don’t think of this one most of the time…

! “atomicity” of writes
" ala the tri-state post-write guarantee of per-sector ECC
" Atomic unit often called a “page” by DB folk

! update ordering
" simply ensuring that one update propagates before another

! real atomicity
" ensuring that a set of updates all occur or none do

15-712, Fall 2003, Greg Ganger 11

! Unwritten guarantee provided by per-sector ECC
" because the ECC check will fail if only partially written

! Same trick can be used by FS or applications

! Good for grouping inter-related updates
" but increases likelihood of data loss due to the third state

data is lost when write is only partially completed
while uncommon, such loss is more likely than a grown defect

! especially if not physically co-located
" as a result, this mechanism is used for limited cases

e.g., internal consistency of directory chunks and inodes

“Atomicity” of writes as a tool

15-712, Fall 2003, Greg Ganger 12

Update ordering as a tool

! Just what it sounds like…
! We’ve seen this a lot so far

" Softupdates
" B-link tree updates

! Good for single-direction dependencies
" just do one before the other

! Problem: doesn’t work for bidirectional dependencies
" which, unfortunately, is most of them

! Solution: some can be converted to single-direction
" because some directions are more important than others ;)
" clean-up must be done after system failures

Views of the Database

• Current DB: on disk + memory buffers

– Some transactions are in flight with data and metadata changes

in memory buffers that might not occur

• Materialized DB: crash restart before applying log

processing

– Some logically completed changes may not be visible on disk

because some memory buffers were lost

– Recovery: Go from materialized DB -> Current DB

• Physical DB: on disk

– All disk blocks including out-of-date blocks, incomplete data

structures and free space

Sequencing Views

• Changing non-volatile memory

– “Modifications” of current DB may cause “writes” to

physical DB that are not part of materialized DB until

pointer structs are updated, ie. “propagated” (like LFS

updates, which learned from DB theory)

– Some DBs overwrite prior copes so write=propagate, but

this makes changes in materialized DB non-atomic (harder

to recover)

– Implementing atomic disk changes via non-overwrite

propagation is based on writing a collection of new versions

of buffer pages into free space then writing one block:

• a root data structure pointer, a current maximum timestamp, a

pointer to the new page table, etc

Stealing & Forcing

• Recall: Buffer manager decides to write memory pages

out to disk

• If uncommitted Tx modifications can overwrite most

recent committed item on non-vol storage: STEAL

(otherwise NO-STEAL)

– STEAL is ugly - must UNDO

– NO-STEAL could require too much mem or

swapping

• If buffer ensures all updates by Tx are reflected on non-

volatile storage b4 commit, FORCE (otherwise NO-

FORCE) 15

Temporary Log Files

• Redundant info for coping with failure: “write ahead logging”

– On-disk temporary (write-ahead) log file contains all that is needed to
transform materialized DB to current DB

– Memory pressure can push uncommitted dirty data to database; in
“overwrite” DBs this requires UNDO log records (STEAL) written
before propagation; in non-overwrite DBs such writes are “forgotten”
when memory is lost

– Commit logically forces propagation (FORCE), but efficiency
concerns cause DBs to avoid synchronous IO, instead writing REDO
log records before transaction commit

– Point: WAL allows STEAL/NO-FORCE buffer management
(asynchrony!)

• Log types

– Physical vs Logical: capture data values or operations giving values

– State or transition: capture full values or differences from last values

– Page or record: capture full page values or only the records changing

Physiological Logging

• In practice, many systems:

– Log records refer to single page

– May reflect logical operations on page

• e.g.,

– Insert would specify new value of tuple

– Would not specify free-space manip. or reorganization on

page as a result of insert

– REDO logic would have to do that

• Tuple insert that touched multiple pages would require 1 log

record for each page updated. Avoids consistency problem

but reducing somewhat the log size from physical logging.17

Crash Recovery

Checkpoint

• Checkpoints limit REDO processing

– REDO goes to beginning of log, but that can be really slow

– FORCE propagation = no REDO (UNDOs on pre-written pages)

– Transaction consistent checkpoint: Quiesce all transactions,
propagate all dirty data, write log entry (long unavailability)

• Allows partial REDO to start here and global UNDO recovery
processing to stop here

– Action consistent checkpoint: Quiesce transaction-caused actions
(calls into DBMS), propagate all dirty data, write log entry

• Allows partial REDO recovery processing to start here, but UNDO
may go back further to find BEGIN for oldest incomplete transaction

– Fuzzy checkpoints are those that “propagate” committed writes
only to log (pointer to log address of REDO record), to reduce
REDO processing on restart

• Notice unpropagated in successive checkpoints & propagate

Comparisons

Nesting, Savepoints, Chaining

• Various tools for programmer convenience

• Nesting: embedded transactions (code reuse)

– outer transaction durable; abort cascades to top

– allows isolation for concurrent nesting

• Savepoints: tryagain within transaction

– rollback to savepoint; not durable until commit

– Allows partial transaction rollback

• Chaining: series of related transactions

– language trick for back2back transactions

– “intermediate” commit makes durable changes
21

Eval

• Taxonomy/survey paper

– no evaluation other than explaining tradeoffs in

principle

– Extensive reference to implementations, but all

quite old now

Locking

• Common: two-phase locking

– Once a transaction has released a lock, it may not

obtain any additional locks

• Growing phase, shrinking phase

• Ensures serializability

• 2PL implemented by DBMS lock manager

– Grants/blocks locks

– Deals with deadlock

• Avoidance? Detection?

– Avoid: pre-declare locks, abort instead of block

– Detect: timeouts (how long???), waits-for graph cycle (abort/rollback)23

Selective Isolation

• Serializability may be too expensive

– Consider data analysis prog that aggregates over

1,000,000s of tuples

• Think Sawzall examples - approx. top-10 list

– One or two inconsistent views may not matter

– Relaxed consistency is a huge deal in many pragmatic

systems

• see, e.g., TACT paper - tunable availability and consistency

trade-offs for distributed sys.

• Example: Airline reservations may tolerate += 1 available seat

using existing overbooking mechanisms
24

– Read uncommitted

• No isolation! (fast & ugly)

– Read committed

• A re-read of data may see data modified since start (but

those mods. only done by committed Tx)

– Allows DB to write committed Tx

– Repeatable read

• On re-execute query, different result set may be returned

(though values the same)

– Allows deletes, etc. to be written

25

