
OS Extensibility
15-712

OS Organization (reminder)

• Many ways to structure an OS. How to decide?

• What must an OS do? (consider desktop/server)

• Let apps use machine resources

• (Provide convenient abstractions; hide pain)

• Multiplex resources among apps

• Prevent starvation

• Provide isolation and protection, but still

• Allow cooperation and interaction

Parts of these lecture notes taken from Robert Morris’s 6.824 course notes

Traditional Approach

• Virtualize some resources: CPU and memory

• Give each app virtual CPU and memory

• Simple model for programmers! No need to worry about
TLBs, limited physical mem, memory layout, etc.

• Abstract other resources

• Storage, network, IPC

• Layer a shareable abstraction over h/w

• Filesystems and files

• TCP/IP

Ex: Virt. CPU

• Goal: Simulate dedicated CPU per process

• Processes don’t need to worry about sharing

• O/S runs each process in turn via clock interrupt

• Clock -> processes don’t have to yield; prevents hogging

• Making it transparent:

• OS saves & restores process state in process table

Monolithic OS

• Kernel is big program: process control, VM, FS, net

• All of kernel runs with full privilege (easy...)

• Good: subsystems can cooperate easily (e.g., paging & FS)

• Just a function call away

• Direct access to all phys memory & data structs if needed

• Bad: Complex! Bugs easy, no isolation inside OS

User
Kernel
HW

Alternate: Microkernels
• Basic idea: user-space

servers talking via IPC

• Servers:
• VM, FS, TCP/IP, even many device drivers

• Kernel provides just the basics:
• Fast IPC, most basic mem access, interrupts, etc.

• Gives servers semi-priv. access to some HW

• Apps talk to servers via IPC/RPC

• Good: simple/fast kernel, subsystem isolation, enforces
better modularity

• Bad: cross subsystem performance opt harder; using
many, many IPCs expensive despite years of tuning

• Ideas really good but whole package didn’t catch on

Servers
Kernel

HW

App

Exokernels and SPIN

• Running “stuff” in the (real) kernel is handy

• Obvious goal: performance

• Less obvious goals: Making new things possible/easier

• Two very different approaches...

Exokernel Philosophy
• Eliminate all abstractions!

• For any problem, expose h/w or info to app

• Let app do what it wants

• Exokernel doesn’t provide address space, virtual CPU,
FS, TCP, etc.

• Gives raw pages, page mappings, interrupts, disk i/o, net i/o
directly to app

• Let app build nice address space if it wants - or not!

• Should give aggressive apps great flexibility

• Deliberately strong position (inflammatory)...

Exo-Challenges

• How to multiplex cpu/mem/etc. if you expose them
directly to app?

• How to prevent hogs of above?

• How to provide isolation / security despite giving
apps low-level control?

• How to multiplex resources w/out understanding
them? e.g. contents of disk, formats of pkts

Exo-Architecture

Exokernel

HW

App + LibOS

Protection
low level allocation
physical names
revocation requests
exposes h/w information

App stuff
Resource management
Filesystem layout,
network protocols, etc.

Ex: Exokernel memory

• First, kernel provides a few “guaranteed mappings”
from virt -> phys

• App virtual address space has two segments

• First holds normal app code & data

• virt addrs in second segment can be “pinned”

• These addrs hold exception handling code & page tables

• On TLB miss

• If virt addr in 2nd seg & pinned, kernel installs TLB entry

• Otherwise, kernel dispatches to app

mem, contd.

• App checks VA in its page table and then calls into
kernel to setup TLB entry & capability

• Kernel verifies that capability = the access rights
requested by the application. Installs TLB entry.

• Result:

• App gets total control over its virt->phys mappings

• But doesn’t need to deal with _real_ pain of TLB mgmt

• Safe, b/c kernel only lets app point to its own phys
memory addrs (separate mgmt and protection)

mem interface
• App gets to ask of kernel:

• pa = AllocPage()

• DeallocPage(pa)

• TLBwr(va, pa)

• TLBvadelete(va)

• Kernel asks of app:

• PageFault(va)

• PleaseReleaseAPage()

• Point: App interface to kernel looks like (but not exactly)
kernel -> hw. App gets lots of control.

Example
• Why useful? Consider database page caching

• On traditional OS:

• If OS needs phys page, may transparently write that page
to disk.

• But that’s a waste! The DB knows that page is just a
cache - better to release than to unnecessarily write.
Data is already present on disk...

• Exokernel:

• Kernel says “Please free something up!”

• App can examine its cache to toss those out

• If that fails, can write data to disk on its own

Other protection
• LibOS must be able to protect its own “apps” from

each other
• e.g., a UNIX LibOS.

• Memory controlled by hieararchically-named capabilities

• Allows delegation of control to children

• Wakeup predicates

• Download tiny code into kernel to specify when it should
wake up app

• Network sharing

• Download tiny code to specify packet dispatching

• Unlike SPIN, “tiny language” - domain specific and small

• Critical sections by turning off interrupts

Cheetah on XOK
• Merged file cache and retransmission pool

• Zero-copy. Similar benefits could arise from sendfile()

• IO-Lite @ Rice (Vivek Pai) did something similar - found
similar benefits in speed and reduced memory pressure
(but did it in a normal kernel w/some app changes)

• Batches I/O ops based on knowledge of app

• e.g., doesn’t ACK the HTTP req. packets immediately

• Delays and sends ACK w/response instead

• App-specific file layout on disk

• Groups objects in adjacent disk blocks if those objects
appear in same web page (bigger sequential reads)

Cheetah overall
• Vastly faster than NCSA and Harvest
• But so are other web servers!

• Apache faster than NCSA
• “Flash” - Vivek pai - user-level web server - 50% faster than

Apache...

• The usual question: does this level of perf matter for
serving static web loads?
• Pai argues otherwise in recent NSDI paper (“Connection

Conditioning”)
• A $200 computer can saturate a $1,000/month 100Mbit/sec

Internet connection.
• But disk seek avoiding could be critical for some loads

• Exokernel folk made startup, ExoTech. Tried to make uber-fast
video-on-demand server appliances. Didn’t really take off.

Opinions about Exo?

SPIN

• Alternate approach: download “safe” code into kernel

• Same goal: Adapt OS behavior to app

• Note uses of downloaded code

• Modern unix: BPF (Berkeley Packet Filter)

• Download small code to select packets @ low-level network code

• Exokernel: DPF (Dynamic Packet Filter)

• Same idea, but code actually compiled dynamically = faster

• These are “tiny languages” (no loops, etc.)

• SPIN instead d/l’s general modula-3 code

SPIN

• Goals:

• Ensure trustworthy system w/untrusted code

• High performance

• Maximize flexibility (let user override as many kernel
funcs as possible)

• Approach:

• Download code into kernel

• Split kernel into many small components

• Allow apps to register handlers for those components to
override behavior

SPIN challenges

• Safety - code can’t crash, loop forever, etc.

• Isolation - code must apply only to the user or
process that downloaded it

• Information leaks - code running in kernel must not
be able to access or leak private information

• Granularity: What events to expose?

• Multiplexing: What if multiple apps want to handle
an event?

• Performance

Design

• Kernel & extensions in modula 3

• Certifying compiler digitally signs binaries

• Language + runtime is typesafe, provides security

• Pointers to kernel objects are indirect capabilities

• Can’t be forged or re-pointed by untrusted app code

• Name-based protection domains

• Can’t extend if you can’t name

• Register proc that authorizes (or denies) linking

• Network - packet filter too...

Design 2

• System designers specify the lowest level set of
events

• e.g., “Console.print”; page fault handler

• Compare to XOK approach - by default, everything
provided in app vs. by design, things can be overridden by
app

• Choosing events is hard!

• Not too fine-grained (overhead, clunky)

• Not too coarse-grained (insufficient control, forces
overriding func to re-implement)

Interfaces

• Raised interface

• Requests a service

• e.g., “allocate a page”

• Handled interface

• Obj makes demands of clients

• e.g., “reclaimPage”

• (Note similarity to XOK memory interface)

Evaluation

• For both of these systems -

• What do you evaluate?

• What is a metric for “flexibility”?

• Easy to focus on performance...

• Is there new functionality these approaches enable?

• Sometimes speed = “new functionality” by making new
things practical, not just possible

• What do you compare against?

• Micro or macro benchmarks?

