OS Extensibility

15-712

OS Organization (reminder)

® Many ways to structure an OS. How to decide?
® What must an OS do! (consider desktop/server)

® |et apps use machine resources
® (Provide convenient abstractions; hide pain)

® Multiplex resources among apps

® Prevent starvation

® Provide isolation and protection, but still
°

Allow cooperation and interaction

Parts of these lecture notes taken from Robert Morris’s 6.824 course notes

Traditional Approach

® Virtualize some resources: CPU and memory
® Give each app virtual CPU and memory

® Simple model for programmers! No need to worry about
TLBs, limited physical mem, memory layout, etc.

® Abstract other resources

® Storage, network, IPC

® Layer a shareable abstraction over h/w

® Filesystems and files
e TCP/IP

Ex: Virt. CPU

® Goal: Simulate dedicated CPU per process

® Processes don’t need to worry about sharing
® OJS runs each process in turn via clock interrupt
® C(Clock -> processes don’t have to yield; prevents hogging

® Making it transparent:

® OS saves & restores process state in process table

Monolithic OS

User

Kernel
HW

® Kernel is big program: process control,VM, FS, net

® All of kernel runs with full privilege (easy...)

® Good: subsystems can cooperate easily (e.g., paging & FS)
® Just a function call away

® Direct access to all phys memory & data structs if needed

® Bad: Complex! Bugs easy, no isolation inside OS

Alternate: Microkernels

Basic idea: user-space APP
servers talking via IPC Servers
Servers: Kernel
e VM, FS, TCP/IP even many device drivers HW

® Kernel provides just the basics:
® Fast IPC, most basic mem access, interrupts, etc.
® Gives servers semi-priv. access to some HW

Apps talk to servers via IPC/RPC

Good: simple/fast kernel, subsystem isolation, enforces
better modularity

Bad: cross subsystem performance opt harder; using
many, many IPCs expensive despite years of tuning

|deas really good but whole package didn’t catch on

Exokernels and SPIN

® Running “stuff” in the (real) kernel is handy
® Obvious goal: performance

® |ess obvious goals: Making new things possible/easier

® Two very different approaches...

Exokernel Philosophy

Eliminate all abstractions!

For any problem, expose h/w or info to app

® |etapp do what it wants

Exokernel doesn’t provide address space, virtual CPU,
FS, TCP, etc.

® Gives raw pages, page mappings, interrupts, disk i/o, net i/o
directly to app

® | et app build nice address space if it wants - or not!
Should give aggressive apps great flexibility

Deliberately strong position (inflammatory)...

Exo-Challenges

How to multiplex cpu/mem/etc. if you expose them
directly to app!

How to prevent hogs of above?

How to provide isolation / security despite giving
apps low-level control?

How to multiplex resources w/out understanding
them? e.g. contents of disk, formats of pkts

Exo-Architecture

App stuff
Resource management
Filesystem layout,

s kesy| network protocols, etc.

Exokernel

=M% Protection
low level allocation
physical names
revocation requests
exposes h/w information

Ex: Exokernel memory

® First, kernel provides a few “guaranteed mappings”
from virt -> phys

App virtual address space has two segments
First holds normal app code & data
virt addrs in second segment can be “pinned”

These addrs hold exception handling code & page tables

® OnTLB miss

If virt addr in 2nd seg & pinned, kernel installs TLB entry

Otherwise, kernel dispatches to app

mem, contd.

App checks VA in its page table and then calls into
kernel to setup TLB entry & capability

Kernel verifies that capability = the access rights
requested by the application. Installs TLB entry.

Result:

App gets total control over its virt->phys mappings
But doesn’t need to deal with _real_ pain of TLB mgmt

Safe, b/c kernel only lets app point to its own phys
memory addrs (separate mgmt and protection)

mem interface

® App gets to ask of kernel:
pa = AllocPage()
DeallocPage(pa)

TLBwr(va, pa)
TLBvadelete(va)

® Kernel asks of app:
® PageFault(va)
® PleaseReleaseAPage()

® Point: App interface to kernel looks like (but not exactly)
kernel -> hw. App gets lots of control.

Example

® Why useful? Consider database page caching

® On traditional OS:

® [f OS needs phys page, may transparently write that page
to disk.

® But that’s a waste! The DB knows that page is just a
cache - better to release than to unnecessarily write.
Data is already present on disk...

® Exokernel:
® Kernel says “Please free something up!”
® App can examine its cache to toss those out

® |f that fails, can write data to disk on its own

Other protection

® [ibOS must be able to protect its own “apps’ from
each other

® eg,aUNIXLibOS.

® Memory controlled by hieararchically-named capabilities
® Allows delegation of control to children
® Wakeup predicates

® Download tiny code into kernel to specify when it should
wake up app

® Network sharing
® Download tiny code to specify packet dispatching
® Unlike SPIN,“tiny language” - domain specific and small

® Ccritical sections by turning off interrupts

Cheetah on XOK

® Merged file cache and retransmission pool
® Zero-copy. Similar benefits could arise from sendfile()

® |O-Lite @ Rice (Vivek Pai) did something similar - found
similar benefits in speed and reduced memory pressure
(but did it in a normal kernel w/some app changes)

® Batches I/O ops based on knowledge of app
® e.g.,doesn’t ACK the HTTP req. packets immediately
® Delays and sends ACK w/response instead

® App-specific file layout on disk

® Groups objects in adjacent disk blocks if those objects
appear in same web page (bigger sequential reads)

Cheetah overall

Vastly faster than NCSA and Harvest

But so are other web servers!

® Apache faster than NCSA

® “Flash” -Vivek pai - user-level web server - 50% faster than
Apache...

The usual question: does this level of perf matter for

serving static web loads!?

® Pai argues otherwise in recent NSDI paper (“Connection
Conditioning”)

® A $200 computer can saturate a $1,000/month 100Mbit/sec
Internet connection.

® But disk seek avoiding could be critical for some loads

Exokernel folk made startup, ExoTech. Tried to make uber-fast
video-on-demand server appliances. Didn’t really take off.

Opinions about Exo!

SPIN

® Alternate approach: download “safe” code into kernel
® Same goal: Adapt OS behavior to app

® Note uses of downloaded code

® Modern unix: BPF (Berkeley Packet Filter)

® Download small code to select packets @ low-level network code

® Exokernel: DPF (Dynamic Packet Filter)

® Same idea, but code actually compiled dynamically = faster
® These are “tiny languages” (no loops, etc.)

® SPIN instead d/I's general modula-3 code

SPIN

® Goals:
® Ensure trustworthy system w/untrusted code
® High performance

® Maximize flexibility (let user override as many kernel
funcs as possible)

® Approach:
® Download code into kernel
® Split kernel into many small components

® Allow apps to register handlers for those components to
override behavior

SPIN challenges

Safety - code can’t crash, loop forever, etc.

Isolation - code must apply only to the user or
process that downloaded it

Information leaks - code running in kernel must not
be able to access or leak private information

Granularity: What events to expose!

Multiplexing: What if multiple apps want to handle
an event!

Performance

Design

Kernel & extensions in modula 3

® Certifying compiler digitally signs binaries

® Language + runtime is typesafe, provides security
Pointers to kernel objects are indirect capabilities
® C(Can’t be forged or re-pointed by untrusted app code
Name-based protection domains

® (Can’t extend if you can’t name

® Register proc that authorizes (or denies) linking

Network - packet filter too...

Design 2

® System designers specify the lowest level set of
events

® e.g, ‘Console.print”; page fault handler

® Compare to XOK approach - by default, everything
provided in app vs. by design, things can be overridden by

app
® Choosing events is hard!
® Not too fine-grained (overhead, clunky)

® Not too coarse-grained (insufficient control, forces
overriding func to re-implement)

Interfaces

® Raised interface

® Requests a service

® e.g.,“allocate a page”
® Handled interface
® Obj makes demands of clients
® e.g.,“reclaimPage”

® (Note similarity to XOK memory interface)

Evaluation

For both of these systems -

What do you evaluate?

® What is a metric for “flexibility’?

® Easy to focus on performance...

® s there new functionality these approaches enable!?

® Sometimes speed = “new functionality” by making new
things practical, not just possible

What do you compare against?

Micro or macro benchmarks?

