
Lamport Clocks, Time,
and Ordering Events

15-712 #4
Fall 2007

Announcements

• Waitlist processed. If you’re attending class today,
you’re probably in the course. :)

• New project Wiki page set up. See web page for
details. Use for coordinating, finding partners,
discussing ideas, etc.

Today’s Star

• Time, Clocks, and the Ordering of Events in a
Distributed System

• Leslie Lamport

• PODC Influential Paper, 2000

Why’s it cool?

• Time & ordering are core to distributed systems
logic

• Getting it wrong is a common and classic source of
errors

• Really nasty errors

• Heisenbugs, Performance bugs, Porting bugs

• Formalizes a way to correctly implement a
distributed state machine

• In other words, just about anything

Causal Ordering

• Events may not be ordered

• “Before” and “After” abstractions usually wrong

• Need a causal link for “happened before”

• The ordering of events is really a partial ordering

• True for multithreading, multi-programming

• Even a single node has simultaneity problems

Looking at an ordering

• Simultaneous: No
causal path up space/
time diagram

• The set of “happens
before” arcs for a
specific run is unique

• Permit out of order
message arrival

• q1 -> r4

• q4 -> r3

Space-time diagram

• Simultaneous
== no causal
path up space-
time diagram

• Set of “happens
before” arcs for
a specific run is
unique

• Allow out of order

message arrival

ie. q1 -> r4 and

 q4 -> r3

Logical Clocks

• Assign #s to events

• If there is a causal path from A to B

• C(A) < C(B) for all events A, B

• Note: Says nothing about order of other events

• Can implement arbitrary tie-breakers

• (Which may affect important properties like fairness)

Looking at Logical Clock

• Add ticks btwn events in
one ‘process’ (thread)

• Ticks crossing each send/
receive

• “Happens before” arcs
must go from below to
above tick

• Join ticks across space

Logical clock as space-time ticks

• Add ticks b/w
each event in
process/thread,
and ticks crossing
each send/receive

• “Happens before”
arcs all cross below
to above some tick

• Fill in and join ticks
across space and get
possible simultaneity

Logical Clock Re-Order

• Straighten order of
ticks

• Note: Changes
“order” of
simultaneous p3 and
q3

Logical clock reordering

• Simply
straightening
ticks changes
“order” of
simultaneous
p3 and q3
(Key Insight!)

• But all happens
before, causal
paths still cross
some tick

How to implement?
• Clock condition:

• If event(A) happens before event(B),

• C(A) < C(B) for all A,B

• IR1: Each process has local event count

• IR2: Tag messages with timestamps

• Send with sender event count

• Receive sets receiver clock = max(> incoming, local)

• Do something to establish total order from partial

• e.g., concatenate unique PID to low bits of time

• Logical clocks are very common to let programmers
reason in code. Many, many distributed systems...

Partial vs. Total Order

• Basic lamport clocks give a partial order

• Many events happen “concurrently”

• But sometimes a total order is more convenient

• A consistent total order

• e.g., commit operations to a database

• Or filesystem operations

• Or RPCs, ...

• Different executions of deterministic logic may give
different total orders, some logically incorrect (next
lec) because of simultaneity errors

Distributed Mutex

• Not a very exciting example

• who cares about granting in order they are requested?

• but anyway... let’s suspend disbelief, b/c other examples of this kind
of algorithm really do matter

• Assumptions:

• N messages sent as a single event (multicast)

• All messages sent to all processes

• Messages arrive reliably, in order sent

• If not, add sequence #s, retransmit, buffer

• Fix messages between A&B to force ‘happens b4’

• Queue order by sender timestamp, not receiver

The algo
• NOTE: Generalizes to arbitrary state machine!

• Pi sends Tm:Pi requests resource to all (+self)

• When Pj receives, places it on Q, send timestamped
ack

• To release, Pi removes its own req from Q, sends
timestamped Pi releases to all

• Pj receives release, removes Tm:Pi request from Q

• Pi gets resource if

• Tm:Pi requests message first in Q by total ordering

• Has received message >= Tm from everyone else (no
outstanding messages from them that could contradict)

Has important kids

• Isis (Cornell, 80s)

• Goal: Simplify programming for parallel machines/clusters

• Provided both causally & totally ordered group
communication

• Translation: multicast and pub/sub

• ISIS gave “exactly once” semantics to the group

• All messages reach all receivers “at the same time”

• Causal was 3x faster than total

• But total is easier to program to

• ISIS & derivatives: huge area of dist. sys research

ISIS Causal Order

• Each process keeps time vector of size N

• Start: VT[i] = 0

• When p sends message m, VT[p]++

• Message stamped with VTm (the VT of the sender)

• When p delivers message, p updates vec:

• for i = 1..n: VTp[i] = max(VTp[i], VTm[i])

• VT1 <= VT2 iff for i=1..n: VT1[i] <= VT2[i]

• VT1 < VT2 iff VT1 <= VT2 && exists K s.t. VT1[k] < VT2[k]

• Causality: m1 -> m2 iff VT1 < VT2

• Can you deliver a message from q yet?

• for i in 1..n

• VTm[i] = VT[i] + 1 if i=q

• VTm[i] <= VT[k] otherwise

ISIS derivatives

• “Version Vectors” for distributed filesystems (e.g.,
Coda), CVS, distributed shared memory, etc.

• Same idea, but “clock” is changes to objects

• Later: Horus, Quicksilver

• Improved group communication systems

• Also Birman @ Cornell + MSR

Issues

• Failures: almost always physical timeout

• Logical clocks have no notion of physical time

• Failure tolerance is harder than program logic

• Covert channels can violate system causality

• User interaction/input, filesystem access, etc.

• e.g. phone call example in paper

• Integrating real clocks is tough...

Real Clocks

• Run at different rates

• Your desktop probably gains or loses 1-30 seconds per
day if not time-synched

• And they drift over time, temp, etc.

• Synchronizing:

• Use minimum delivery time

• Lamport requires clock sync error < minimum transmission
time (now microseconds!), but network clock sync gets
milliseconds at best...

• Not practical: so use NTP & live with covert channels

• NTP: 10+ms on WAN, 100s usec on SAN, 100s nanosec
using GPS. But tough to get systems really set this well...

• Accuracy bound: asymmetry in path

• And things like unpredictable delays

• Ethernet contention, interrupts, missed interrupts during high
load (e.g., run “find” on disk), etc.

Network Time Protocol

13

Evaluation

• Thought paper, but some big concepts:

• Many computing events “logically” simultaneous

• With causal links, partial ordering is key

• Total orders easy to impose on partial order if needed

• Broadcast-based group communication - important class of
decentralized algorithms

• Failure logic can’t stay inside logical clock logic

• Covert channels almost certainly will exist that defeat the logical
clock logic

• Real-time clock sync one option, but hard. If not hard, expensive!

• Pretty decent clock sync based on message transmit time (NTP)

