
RPC
15-712 Fall 2007

David Andersen

Making RPC Real

• Nelson84: First solid implementation of RPC

• Idea came years before:
• Nelson’s 1981 CMU thesis, “Remote Procedure Call”

• The treatment of design options for RPC.

• And earlier (e.g., Liskov79, etc.)

• Major contribution: Making it real
• Failure semantics

• Dealing with pointers

• Language issues

• Binding (finding the server)

• Actual wire protocols

• Integrity & Security

• Hard to avoid tangents when building real system

Context

• At that point, Xerox PARC was huge force in
experimental CS

• 1979: “Alto: A Personal Computer”

• The mouse & GUI... (sometimes they didn’t capitalize too
well on their ideas...)

• And remember the hardware

• Ran on a Dorado, a “very powerful” successor to the Alto

• about the speed of a 386.

• about 1000x slower than today’s machines

• 80MB hard disk, 3Mbit/sec ethernet, 56Kbit/sec internet

RPC Basics

• Ease of (programmer) use:

• Local and remote programming with same interface
abstraction

• Flow:

• Caller blocks, arguments are marshalled & sent over net

• Callee unmarshalls & executes; results marshalled &
returned

• Caller unmarshalls and continues

• Code looks just like local code!

Why RPC?

• Familiar, simple semantics

• Easier to program => better programs

• Does some of the “grunt-work”

• Bad: Constantly writing marshalling & unmarshalling code

• etc.

• Efficiency?

• Maybe. But marshalling overhead can be high.

• “Admits efficient impl” - Yes, but came years later via optimizing
IDL compilers

• Generality

• Mostly: No pointer support, etc. -- data structures must be
simple

• Partitioning local/remote separate from code modularity

Alternatives

• Messages

• Different control mechanism for remote side

• Remote fork

• Large granularity!

• What data do you reply with? Entire contents of memory?
Imprecise -> hard to be efficient

• Distributed shared memory

• Needs HW for efficiency

• Very long-running research (into late 90s)

• very hard! Simple interface, but hides a _ton_ of details; has weird
unintentional sharing semantics (page granularity); very hard to
make efficient. RPC and message passing mostly won, except
RDMA and CC-NUMA.

RPC == Messages, really

• “On the Duality of Operating Systems
Structures” (H.C. Lauer, R. M. Needham; Proc. 2nd
International Symposium on Operating Systems, Oct
1978)

• Functionally, RPC is the same as messaging (and it’s
implemented as messages under the hood)

• Difference: Human productivity and familiarity of interface

• RPC middleware is more powerful & pervasive

• Client/server infrastructures mainly RPC (commercial)

• Sunrpc -> NFS, etc. CORBA. MS RPC.

• HPC programming mostly message passing (faster, p2p, more
flexible communication models -- pass the message in a ring,
etc.)

Making it easy: Stubs

• Describe interface in IDL (Interface Definition
Language)

• Think C header files as a decent example

• Compiler automatically turns IDL into “stub”

• Stub has same function signature as original call

• But does a the RPC magic under the hood

• marshal arguments

• call RPC runtime, do whatever binding/resolution/etc.

• send call, wait, unmarshal, return arguments

Flow in an RPC system Binding (Rendezvous)

• How does client find appropriate server?

• Touches on fundamental issues of naming & indirection!

• Cedar used a registry, Grapevine

• Originally written for email handling. :)

• Server publishes interface: type, instance

• Client names service (& maybe instance) -> network addr

• Permits load balancing and nearest-server selection (anycast)

• Cool stuff, now common, e.g., LDAP, ActiveDir

• Simpler schemes work too: DNS, portmap, IANA

• Still a source of complexity & insecurity

Binding: Time

• Communication:

• Step 1: Look up remote receiver

• Step 2: Communicate with returned address

• Ensures consistent communication

• This model repeated at the process addressing level, again
to enable efficient but consistent communication

• could embed address directly (but why?)

• B&N skipped one form: late binding of every req

• Less efficient (must have resolv info in every req)

• Potentially useful in some scenarios (e.g., sensor query)

Marshalling

• Must represent data “on the wire”

• Good: Processor/arch dependence (big/little endian)

• Sometimes ASCII vs. EBCDIC, though less common

• Sometimes number representation (XML does some)

• Can get arbitrarily crazy, but only xml does. :)

• Sometimes called “presentation layer” in networks

• ex: Sun XDR (external data representation)

• Tradeoff: always canonical? optimize for instances?

Marshaling Data Structs.

• No shared memory! How to deal with pointers?

• Simulate it: RPC for all server dereferences? (ugh, slow)

• Shallow copy the structure?

• Fragile - tricky for programmers

• Deep copy the structure?

• Slow, potentially incorrect if dynamically written struct

• Disallow?

• Very common.

• Makes RPC less transparent, but common compromise

• Forces programmers to plan more about local/
remote and data representation

Communication

• Most communication: 1 packet, 1 response

• Reliability: RPC-specific. (Tricky question)

• Bigger packets? “Stop-and-wait ARQ”

• Send a packet. Wait for ACK or timeout.

• Repeat.

• Incredibly inefficient for bulk data transfer on wide-area.

• Not b/c of extra packets as B&N suggest

• But because it requires many round trips

• Need real congestion control, e.g., TCP, for efficient bulk data transfer

• But doesn’t matter for most small req/resp uses of RPC!

• Remember their assumptions: single local network, 1 switch

• Today’s environment has changed. Wide-area & campus-wide client-
server much more common

Semantics

• B&N chose to emulate very closely function calls

• Explicitly decided against timeout support

• Defined an RPC to block the client during call

• This is actually unfortunate

• Complex, robust systems need more control over remote
component timeouts, etc.

• Ex: Re-captcha system issues synchronous javascript load

• Forced synchrony prevents easy impl. of fast failover.

• Distributed systems are not local. Must still deal
with failures, timeouts, delays, etc.

• RPC doesn’t make this easier. Fundamentally tough!

Server failures

• Communication is connectionless, but

• Explicit failures if server crashes and restarts

• So clients can learn what happened

• Good idea?

• Idempotent operations via repeat/reply cache

• ID on each request

• “At most once” semantics.

• (Any stronger guarantees very hard to do with losses)

• Pretty easy to program to.

Server Model

• Pre-forked pool of server processes

• Why? Saves process creation overhead for reqs

• Permits consistent client/process communication if
wanted

• This technique re-emerged in Apache web server

• Digression: server models

• Fork (and pre-forked as optimization)

• Threaded

• Events

• Long-running debate. Nearly religious.

Other optimizations

• Bypassing the lower layers

• Long-standing design debate: cross-layer optimization vs.
modularity

• Can be very fast by “cheating”

• But ties you to specific hardware! (ugh!)

• Make very sure you need that speed...

• Better generalization: RDMA type approaches

• Principled mechanisms for skipping layer computations

• Requires (somewhat complex) HW support

Evaluation

• Microbenchmarks for call-reply latency

• Null RPC, N args, words, N=1, 2, 4, 10, 40, 100

• Set of things evaluated kind of standard

• Modern analysis would have been a bit more statistically
sophisticated. (no max? doesn’t that matter a lot? :)

• fairness: graphing tools got a lot better since ’84.

• Minimal real eval: no stats, no app. benchmarks

• Not compared to much

• 10x to 100x slower than local procedure call

• “This is what we did; it is possible”

• FULLY implemented and in use by PARC!

