
15-441: Computer Networks - Project 3
Congestion Control

Project 3 Lead TA: Dan Perkins

Assigned: Thursday, March 27, 2008.
Due Date: Thursday, May 1, 2008.

1 Overview

In this assignment, you will implement a BitTorrent-like file transfer application. The application will run on top of
UDP, and you will need to implement a reliability and congestion control protocol (similar to TCP) for the application.
The application will be able to simultaneously download different parts, called “chunks”, of a file from different
servers. Please remember to read the complete assignment handoutmore than onceso that you know exactly what is
being provided and what functionality you are expected to add. Project documents, FAQ, and starter files are at:

http://www.cs.cmu.edu/∼dga/15-441/S08/assignments.html
The project consists of amandatory componentthat will be used for grading, and anoptional optimization com-

ponent. The group/groups whose application performs the fastest file transfers (by selecting good peers from whom to
download,while still performing proper congestion control) will receive both glowing praise from the course staff
and the awe and envy of your peers. On the outside chance that this is not sufficient motivation, we will also provide
gift certificates to the top two teams, as well as a “secret prize” for the best code design.

This is a group project and you must find exactly one partner towork with. Once you have found a partner, email
Dan (dperkins@andrew.cmu.edu) with the names of the two people in your group and your andrew logins. Use”15441
GROUP” as the subject line. If you can’t find a partner start by posting on the bboard.

1.1 Help Sessions, Checkpoints and Deadlines

The timeline for the project is below, including several checkpoints checkpoints. To help you pace your work, remem-
ber that checkpoints represent a date by which you should easily have completed the required functionality. Given the
timeline, you can see that this means you should get started now! The late policy is explained on the course website.

Date Description
March 27 Assignment handed out.PLEASE START EARLY!
March 30 Deadline to inform us about project partner pairs
April 2 Recitation: Project Design Overview, Q & A
April 3 Checkpoint 1: WHOHAS flooding and IHAVE responses
April 9 Recitation: Congestion Control in Project 2
April 10 Checkpoint 2 (ungraded): Simple Chunk Download with stop-and-wait
April 17 Checkpiont 3: Sliding window flow-control with reliability
April 24 Checkpoint 4 (ungraded): Simple Congestion Avoidance, with cwnd = 1 after any loss
April 27 Early bird deadline for required functionality (10 bonus points) by 11:59 P.M.
May 1 Late deadline with No penalty (also extra credit and competition) by 11:59 P.M.

There are fourmandatorycheckpoints. Each checkpoint is worth 10 points.

Original File

Chunks

)

".torrent" =

Hash(

Figure 1: Diagram of bittorrent chunking and torrents: Bittorrent takes a large file and breaks it down into separate
chunks which can be downloaded from different “peers”. Chunks are identified by a “hash-value”, which is the result
of computing a well-known hash function over the data in the chunk. When a client wants to download a file, it first
grabs a “torrent” file, which contains all of the hash values for the desired data file. The torrent lets the client know
what chunks to request from other peers in the network.

2 Where to get help

A big part of being a good programmer is learning how to be resourceful during the development process. The first
places to look for help are (1) carefully re-reading the assignment, (2) looking at the project2 website for updates
and the FAQ, (3) scanning previous bulletin board posts, and(4) googling any standard compiler or script error mes-
sages. If you still have a question AFTER doing this, generalquestions should be posted to the class bulletin board,
academic.cs.15-441, we will be happy to help. If you have more specific questions (especially ones that require us to
look at your code), please drop by office hours.

3 Project Outline

During the course of this project, you will do the following:

• Implement a BitTorrent like peer to search for and download/upload file parts.

• Implement a congestion control mechanism to ensure fair andefficient network utilization.

• Implement smart optimizations to get the best possible transfer time (extra credit).

4 Project specification

4.1 Background

This project is loosely based on the BitTorrent Peer-to-Peer (P2P) file transfer protocol. In a traditional file transfer
application, the client knows which server has the file, and sends a request to that specific server for the given file. In
many P2P file transfer applications, the actuallocationof the file is unknown, and the file may be present at multiple
locations. The client first sends a query to discover which ofits many peers have the file it wants, and then retrieves
the file from one or more of these peers.

While P2P services had already become commonplace, BitTorrent introduced some new concepts that made it
really popular. Firstly BitTorrent splits the file into different “chunks”. Each chunk can be downloaded independently
of the others, and then the entire collection of chunks is reassembled into the file. In this assignment, you will be using
a fixed-size chunk of 512Kbytes.

BitTorrent uses a central “tracker” that tracks which peershave which chunks of a file. A client begins a download
by first obtaining a “.torrent” file, which lists the information about each chunk of the file. A chunk is identified by the

2

cryptographic hash of its contents; after a client has downloaded a chunk, it must compute the cryptographic hash to
determine whether it obtained the right chunk or not. See Figure 1.

To download a particular chunk, the receiving peer obtains from the tracker a list of peers that contain the chunk,
and then directly contacts one of those peers to begin the download. BitTorrent uses a “rarest-chunk-first” heuristic
where it tries to fetch the rarest chunk first. The peer can download/upload four different chunks in parallel.

You can read more about the BitTorrent protocol details fromhttp://www.bittorrent.org/protocol.
html. Bram Cohen, its originator also wrote a paper on the design decisions behind BitTorrent. The paper is available
athttp://bitconjurer.org/BitTorrent/bittorrentecon.pdf.

This project departs from real BitTorrent in several ways:

• Instead of implementing a tracker server, your peers will flood the network to find which peers have which
chunks of a file. Each peer will know the identities of every other peer in the network; you do not have to
implement routing.

• To simplify set-up and testing, all file data is actually accessed from a single “master data file”. Peers are
configured with a file to them them what chunks from this file they “own” upon startup.

• You do not have to implement BitTorrent’s incentive based mechanism to encourage good uploaders and dis-
courage bad ones.

But the project adds one complexity: BitTorrent obtains chunks using TCP. Your application will obtain them
usingUDP, and you will have to implement congestion control and reliability. It is a good idea to review congestion
control concepts, particularly TCP, from both lecture and the textbook (Peterson & Davie Section 6.3).

4.2 Programming Guidelines

Your peer must be written in the C programming language, no C++ or STL is allowed. You must use UDP for all the
communication for control and data transfer. Your code mustcompile and run correctly on andrew linux machines.
Refer to slides from past recitations on designing modular code, editing makefiles, using subversion, and debugging.
As with project1, your implementation should be single-threaded.

For network programming, you are not allowed to use any custom socket classes, only the standard libsocket and
csapp libraries. We will provide a hashing library, and you may use public code for basic data structures, but not
any code performing higher-level functionality. These guidelines are similar to project1, except that you may freely
use any code from your project1 (even if you switched partners). However, all code you do not freshly write for this
assignment must be clearly documented in the README.

4.3 Provided Files

Your starter code includes:

• hupsim.pl - This file emulates a network topology using topo.map (see Section 7)

• sha.[ch] - The SHA-1 hash generator

• input buffer.[ch] - Handle user input

• debug.[ch] - helpful utilities for debugging output

• bt parse.[ch] - utilities for parsing commandline arguments.

• peer.c - A skeleton peer file. Handles some of the setup and processing for you.

• nodes.map - provides the list of peers in the network

• topo.map - the hidden network topology used by hupsim.pl. This shouldbe interpreted only by the hupsim.pl,
your code shouldnot read this file. You may need to modify this file when using hupsim.pl to test the congestion
avoidance part of your program.

3

• make-chunks - program to create new chunk files given an input file that contains chunk-id, hash pairs, useful
for creating more larger file download scenarios.

4.4 Terminology

• master-data-file - The input file that contains ALL the data inthe network. All nodes will have access to this file,
but a peer should only read the chunks that it “owns”. A peer owns a chunk if the chunk id and hash was listed
in that peer’s has-chunk-file, or if the peer has already downloaded the chunk since starting up. The second case
only applies if you choose to implement caching as extra credit.

• master-chunk-file - A file that lists the chunk IDs and corresponding hashes for the chunks in the master data
file.

• peer-list-file - A file containing list of all the peers in the network. For a sample of the peer-list-file, please look
at nodes.map.

• has-chunk-file - A per-node file containing list of chunks that a particular node has at startup. However, a peers
will have access to more chunks as they download the chunks from other peers in the network.

• get-chunk-file - A file containing the list of chunk ids and hashes a peer wants to download. This filename is
provided by the user when requesting a new download.

• max-downloads - The maximum number of simultaneous connections allowed in each direction (download /
upload)

• peer-identity - The identity of the current peer. This should be used by the peer to get its hostname and port
from peer-list-file

• debug-level - The level of debug statements that should be printed out by DPRINTF(). For more information,
please look atdebug.[h,c].

4.5 How the file transfer works

The code you write should produce an executable file named “peer”. The command line options for the program are :

peer -p <peer-list-file> -c <has-chunk-file> -m <max-downloads>
-i <peer-identity> -f <master-chunk-file> -d <debug-level>

The peer program listens on standard input for commands fromthe user. The only command is “GET<get-chunk-
file> <output filename>”. This instruction from the user should cause your program to open the specified chunks file
and attempt to download all of the chunks listed in it (you canassume the file names contain no spaces). When your
program finishes downloading the specified file, it should print “GOT <get-chunk-file>” on a line by itself. You do
not have to handle multiple concurrent file requests from theuser. Our test code will not send another GET request
until the first has completed; you’re welcome to do whatever you want internally. The format of different files are
given in Section 4.7.

To find hosts to download from, the requesting peer sends a “WHOHAS <list>” request to all other peers, where
<list> is the list of chunk hashes it wants to download. The list specifies the SHA-1 hashes of the chunks it wants
to retrieve. The entire list may be too large to fit into a single UDP packet. You should assume the maximum packet
size for UDP as 1500 bytes. The peer must split the list into multiple WHOHAS queries if the list is too large for a
single packet. Chunk hashes have a fixed length of 20 bytes. Ifthe file is too large to express in a single WHOHAS
query your client may send out the GET requests iteratively,waiting for responses to a GET request’s chunks to be
downloaded before continuing. For better performance, your client should send these requests in parallel.

Upon receipt of a WHOHAS query, a peer sends back the list of chunks it contains using the “IHAVE<list>”
reply. The list again contains the list of hashes for chunks it has. Since the request was made to fit into one packet, the
response is guaranteed to fit into a single packet.

4

The requesting peer looks at all IHAVE replies and decides which remote peer to fetch each of the chunks from. It
then downloads each chunk individually using “GET<chunk-hash>” requests. Because you are using UDP, you can
think of a “GET” request as combining the function of an application-layer “GET” requestanda the connection-setup
function of a TCP SYN packet.

When a peer receives a GET request for a chunk it owns, it will send back multiple “DATA” packets to the
requesting peer (see format below) until the chunk specifiedin the GET request has been completely transferred.
These DATA packets are subject to congestion control, as outlined in Section 6.2. The peer may not be able to satisfy
the GET request if it is already serving maximum number of other peers. The peer can ignore the request or queue
them up or notify the requester about its inability to serve the particular request. Sending this notification is optional,
and uses the DENIED code. Each peer can only have 1 simultaneous download from any other peer in the network,
meaning that the IP address and port in the UDP packet will uniquely determine which download a DATA packet
belongs to.

When a peer receives a DATA packet it sends back an ACK packet tothe sender to notify that it successfully
received the packet. Receivers should acknowledge all DATApackets.

4.6 Packet Formats

All the communication between the peers use UDP as the underlying protocol. All packets begin with a common
header:

1. Magic Number [2 bytes]

2. Version Number [1 byte]

3. Packet Type [1 byte]

4. Header Length [2 bytes]

5. Total Packet Length [2 bytes]

6. Sequence Number [4 bytes]

7. Acknowledgment Number [4 bytes]

Just like in the previous assignment, all multi-byte integer fields must be transmitted in network byte order (the
magic number, the lengths, and the sequence/acknowledgment numbers). Also, all integers must be unsigned.

The magic number should be 15441, and the version number should be 1. Peers should drop packets that do not
have these values. The “Packet Type” field determines what kind of payload the peer should expect. The codes for
different packet types are given in Table 1. By changing the header length, the peers can provide custom optimizations
for all the packets (if you choose). Sequence number and Acknowledgment number are used for congestion control
mechanisms similar to TCP as well as reliable transmission.

If you extend the header length, please begin your extended header with a two-byte “extension ID” field set to your
group’s number, to ensure that you can interoperate cleanlywith other people’s clients. Similarly, if your peer receives
an extended header and the extension ID does not match your group number, just ignore the extensions.

The payload for both WHOHAS and IHAVE contain the number of chunk hashes (1 byte), 3 bytes of empty
padding space to keep the chunk 32-bit aligned, and the list of hashes (20 bytes each) in them. The format of the
packet is shown in Figure 2(b). The payload of GET packet is even more simple: it contains only the chunk hash for
the chunk the client wants to fetch (20 bytes).

Figure 2(c) shows an example DATA packet. DATA and ACK packets do not have any payload format defined;
normally they should just contain file data. The sequence number and acknowledgment number fields in the header
have meaning only in DATA and ACK packets. In this project thesequence numbers always start from 1 for a new
“GET connection.” A receiving peer should send an ACK packetwith acknowledgment number 1 to acknowledge that
is has received the data packet with sequence number 1 and so on. Even though there are both a sequence number and
an acknowledgment number fields in the header,you should not combine DATA and ACK packets. Do not use a DATA

5

Packet Type Code
WHOHAS 0
IHAVE 1
GET 2
DATA 3
ACK 4
DENIED 5

Table 1: Codes for different packet types.

Ack Num

Seq Num

Header Len Packet Len

TypeVersionMagic

4 bytes

(a) The basic packet header, with each
header field named.

15441 01

16

invalid

invalid

4 bytes

padding 2

60

Chunk Hash #1 (20 bytes)

Chunk Hash #2 (20 bytes)

(b) A full WHOHAS request with two
Chunk hashes in the request. Note that
both seq num and ack num have no
meaning in this packet.

Chunk Data (1000 bytes)

16 1016

invalid

24

3115441

4 bytes

(c) A full DATA packet, with seq
number 24 and 1000 bytes of data.
Note that the ack num has no meaning
because data-flow is one-way.

Figure 2: Packet headers.

6

packet to acknowledge a previous packet and do not send data in a ACK packet. This means that for any DATA packet
the ACK num will be invalid and for any ACK packet the SEQ num field will be invalid. Invalid fields still take up
space in the packet header, but their value should be ignoredby the peer receiving the packet.

4.7 File Formats

Chunks File:

File: <path to the file which needs sharing>
Chunks:
id chunk-hash
.....
.....

Themaster-chunks-filehas above format. The first line specifies the file that needs tobe shared among the peers.
The peer should only read the chunks it is provided with in thepeer’shas-chunks-fileparameter. All the chunks have
a fixed size of 512KB. If the file size is not a multiple of 512KB then it will be padded appropriately.

All lines after “Chunks:” contain chunk ids and the corresponding hash value of the chunk. The hash is the SHA-1
hash of the chunk, represented as a hexadecimal number (it will not have a starting “0x”). The chunk id is a decimal
integer, specifying the offset of the chunk in the master data file. If the chunk id isi, then the chunk’s content starts at
an offset ofi × 512k bytes into the master data file.

Has Chunk File
This file contains a list of the ids and hashes of the chunks a particular peer has. As in the master chunk file, the ids are
in decimal format and hashes are in hexadecimal format. For the same chunk, the id of the chunk in the has-chunk-file
will be the same as the id of that chunk in the master-chunks-file.

id chunk-hash
id chunk-hash
.....

Get Chunk File
The format of the file is exactly same as the has-chunk-file. Itcontains a list of the ids and hashes the peer wishes to
download. As in the master chunk file, the ids in decimal format and hashes are in hexadecimal format. For the same
chunk of data, the id in the get-chunk-file might NOT be the same as the id of that chunk in the master-chunks-file.
Rather, the id here refers to the position of the chunk in the file that the user wants to save to.

id chunk-hash
id chunk-hash
.....

Peer List File
This file contains the list of all peers in the network. The format of each line is:

<id> <peer-address> <peer-port>

The id is a decimal number,peer-addressthe IP address in dotted decimal format, and theport is port integer in
decimal. It will be easiest to just run all hosts on differentlocalhost ports.

7

5 Example

Assume you have two images A.gif and B.gif you want to share. These two files are available in the ‘example’
subdirectory of the code. Westrongly suggest that you walk through these steps as you read them in order to get a
better understanding of what each file contains (the hash values in this document are not the actual hash values, to
improve readability).

First, create two files whose sizes are multiple of 512K, using:

tar cf - A.gif | dd of=/tmp/A.tar bs=512K conv=sync count=2
tar cf - B.gif | dd of=/tmp/B.tar bs=512K conv=sync count=2

With padding, A.tar and B.tar are exactly 1MB big (ie: 2 chunks long).
Let’s run two nodes, one on port 1111 and one on port 2222
Suppose that the SHA-1 hash of the first 512KB of A.tar is 0xDE and the second 512KB is 0xAD. Similarly, for

B.tar the 0-512KB chunk hash is 0x15 and the 512KB-1MB chunk hash is 0x441.
First, do the following:

cat /tmp/A.tar /tmp/B.tar > /tmp/C.tar
make-chunks /tmp/C.tar > /tmp/C.chunks
make-chunks /tmp/A.tar > /tmp/A.chunks
make-chunks /tmp/B.tar > /tmp/B.chunks

This will create themaster data fileat /tmp/C.tar. The contents of C.chunks will be:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad
2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Recall that ids are in decimal format, while the hash is in hexadecimal.The contents of A.chunks will be:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad

The contents of B.chunks will be:

0 0000000000000000000000000000000000000015
1 0000000000000000000000000000000000000441

Next, edit the C.chunks file to add two lines and save this as C.masterchunks:

File: /tmp/C.tar
Chunks:
0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad
2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Next create a peer file called /tmp/nodes.map It should contain

1 127.0.0.1 1111
2 127.0.0.1 2222

Finally, you need to create files that describe the initial content of each node. Let’s have node 0 have all of file A.tar
and none of file B.tar. Let node 1 have all of file B.tar and none of A.tar .

Create a file /tmp/A.haschunks whose contents are:

8

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad

Create a file /tmp/B.haschunks whose contents are:

2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Note that the ids in the above two files are obtained from C.masterchunks, which in turn refers to the offset in the
master data file.

Now, to run node 1, type:
peer -p /tmp/nodes.map -c /tmp/A.haschunks -f /tmp/C.masterchunks -m 4 -i 1

and to run node 2, type in a different terminal:
peer -p /tmp/nodes.map -c /tmp/B.haschunks -f /tmp/C.masterchunks -m 4 -i 2

After the peer for node 1 starts, you can typeGET /tmp/B.chunks /tmp/newB.tar. This command tells
your peer to fetch all chunks listed in /tmp/B.chunks and save the downloaded data chunks to the file /tmp/newB.tar
ordered by the id values in /tmp/B.chunks.

Here is an example of what your code should to do (note that messages are displayed here in plain text, but the
actual packet content will be binary). Node 1 should send a‘‘WHOHAS 2 0000...015 0000..00441’’ (for
the 2 chunks that are named 00...15 and 00.441) to all the peers in nodes.map. It will get one IHAVE reply from
node 2 that has “IHAVE 2 0000...015 0000..00441”. Node 1 should then send a message to Node 2 saying‘‘GET
0000...015’’. Node 2 starts sending Data packets as limited by flow/congestion control and Node 1 sends ACK
packets as it gets them. After the GET completes (i.e. 512KB has been transferred), Node 1 should then send a
message to Node 2 saying‘‘GET 0000...00441’’ and should perform this transfer as well.

At the end, you should have new file called /tmp/newB.tar. To make sure you got it right, you can compare this file
with /tmp/B.tar to make sure they are identical (use the unix“diff” utility).

In summary, there are basically three chunk description formats (get-chunks, has-chunks and master-chunks) and
a peer list format.

6 Project Tasks

This section details the requirements of the assignment. This high-level outline roughly mirrors the order in which
you should implement functionality.

6.1 Task 1 - 100% Reliability & Sliding Window

The first task is to implement a 100% reliable protocol for filetransfer (ie: DATA packets) between two peers with
a simple flow-control protocol. Non-Data traffic (WHOHAS, IHAVE, GET packets) does not need to be transmitted
reliably or with flow-control. The peer should be able to search the network for available chunks and download them
from the peers that have them. All different parts of the file should be collected at the requesting peer and their validity
should be ensured before considering the chunks as received. You can check the validity of a downloaded chunk by
computing its SHA-1 hash and comparing it against the specified chunk hash.

To start the the project, use a fixed-size window of8 packets1. The sender should not send packets that fall out of
the window. The Figure 3 shows the sliding windows for both sides. The sender slides the window forward when it
gets an ACK for a higher packet number. There is a sequence number associated with each packet and the following
constraints are valid for the sender (hint: your peers will likely want to keep state very similar to that shown here):

Sending side

• LastPacketAcked ≤ LastPacketSent

• LastPacketSent ≤ LastPacketAvailable

1Note that TCP uses a byte-based sliding window, but your project will use a packet-based sliding window. It’s a bit simplerto do it by packet.
Also, unlike TCP, you only have a sender window, meaning that window size does not need to be communicated in the packet header

9

Sender

LastPacketAvailable

LastPacketSentLastPacketAcked

Receiver

LastPacketRead

LastPacketRcvd
NextPacketExpected

Sender

LastPacketAvailable

LastPacketSentLastPacketAcked

Receiver

LastPacketRead

LastPacketRcvd
NextPacketExpected

Figure 3: Sliding Window

• LastPacketAvailable − LastPacketAcked ≤ WindowSize

• packet betweenLastPacketAcked andLastPacketAvailable must be “buffered” – you can either implement
this by buffering the packets or by being able to regenerate them from the datafile.

When the sender sends a data packet it starts a timer for it. It then waits for a fixed amount of time to get the ac-
knowledgment for the packet. Whenever the receiver gets a packet it sends an acknowledgment forNextPacketExpected−
1. That is, upon receiving a packet with sequence number = 8, the reply would be “ACK 8”, but only if all packets
with sequence numbers less than 8 have already been received. These are called cumulative acknowledgements. The
sender has two ways to know if the packets it sent did not reachthe receiver: either a time-out occurred, or the sender
received “duplicate ACKs.”

• If the sender sent a packet and did not receive an acknowledgment for it before the timer for the packet expired,
it resends the packet.

• If the sender sent a packet and received duplicate acknowledgments, it knows that the next expected packet (at
least) was lost. To avoid confusion from re-ordering, a sender counts a packet lost only after 3 duplicate ACKs
in a row.

If the requesting client receives a IHAVE from a host, and then it should send a GET to that same host, set a timer
to retransmit the GET after some period of time (less than 5 seconds). You should have reasonable mechanisms in
your client to recognized when successive timeouts of DATA or GET traffic indicates that a hosts has likely crashed.
Your client should then try to download the file from another peer (reflooding the WHOHAS is fine).

We will test your your basic functionality using a network topology similar to Figure 4(a). A more complicated
topology like Figure 4(b) will be used to test for concurrentdownloads and robustness to crashes, as well as for
measuring performance in the competition. As suggested by the checkpoints, you can first code-up basic flow control
with a completely loss free virtual network to simplify development.

6.2 Task 2 - Congestion control

You should implement a TCP-like congestion control algorithm on top of UDP for all DATA traffic (you don’t need
congestion control for WHOHAS, IHAVE, and GET packets). TCP uses an end-to-end congestion control mechanism.

10

A B

C

D

F

E

File

A B

C

D

F

E

F

E

File

(a) A simple scenario that tests most of the required functionality.
Peer D has all the chunks in the file. Peer A wants to get the file from
D. In this problem, the file should reach the Peer A, 100% reliably.
Peers themselves should not drop valid packets.

A B

C

D

F

E

File

File

A B

C

D

F

E

F

E

File

File

(b) An example topology for the speed competition. Peers D and
E between them have the entire file. Peers A, B want to get the
complete file. The peers should recognize that A and B are close
together and transfer more chunks between them rather than getting
them from D and E. One test might be to first transfer the file to A,
pause, and then have B request the file, to test if A caches the file and
offers it. A tougher test might have them request the file at similar
times.

Figure 4: Test topologies

Broadly speaking, the idea of TCP congestion control is for each source to determine how much capacity is available
in the network, so it knows how many packets it can safely have“in transit” at the same time. Once a given source has
this many packets in transit, it uses the arrival of an ACK as asignal that one of its packets has left the network, and it
is therefore safe to insert a new packet into the network without adding to the level of congestion. By using ACKs to
pace the transmission of packets, TCP is said to be “self-clocking.”

TCP Congestion Control mechanism consists of the algorithms of Slow Start, Congestion Avoidance, Fast Re-
transmit and Fast Recovery. You can read more about these mechanisms in Peterson & DavieSection 6.3 .

In the first part of the project, your window size was fixed at 8 packets. The task of this second part is to dynamically
determine the ideal window size. When a new connection is established with a host on another network, the window
is initialized to one packet. Each time an ACK is received, the window is increased by one packet. This process is
calledSlow Start. The sender keeps increasing the window size until the first loss is detected or until the window size
reaches the valuessthreash(slow-start threashold), after which it enters CongestionAvoidance mode (see below). For
a new connection the ssthresh is set to a very big value—we’ll use 64 packets. If a packet is lost in slow start, the
sender sets ssthresh tomax(currentwindowsize/2, 2), in case the client returns to slow start again during the same
connection.

Congestion Avoidanceslowly increases the congestion window and backs off at the first sign of trouble. In this
mode when new data is acknowledged by the other end, the window size increases, but the increase is slower than
the Slow Start mode. The increase in window size should be at most one packet each round-trip time (regardless how
many ACKs are received in that RTT). This is in contrast to Slow Start where the window size is incremented for
each ACK. Recall that when the sender receives3 duplicate ACK packets, you should assume that the packet with
sequence number = acknowledgment number + 1 was lost, even ifa time out has not occurred. This process is called
Fast Retransmit.

Similar to Slow Start, in Congestion Avoidance if there is a loss in the network (resulting from either a time out, or
duplicate acks), ssthresh is set tomax(windowsize/2, 2). The window size is then set to 1 and the Slow Start process
starts again.

11

The last mechanism is Fast Recovery.You do not need to implement Fast Recovery for the project, but it would be
a good trick to implement for the competition phase of the assignment! You can read up more about these mechanisms
from Section 6.3.3 of Peterson & Davie.

6.2.1 Graphing Window Size

Your program must generate a simple output file (named problem2-peer.txt) showing how your window size varies over
time for each chunk download. This will help you debug and test your code, and it will also help us grade your code
and any extra-credit you implement. The output format is simple and will work with many Unix graphing programs
like gnuplot. Every time a window size changes, you should print the ID of this connection (choose something that
will be unique for the duration of the flow), the time in milliseconds since your program began, and the new window
size. Each column should be separated by a tab. For example:

f1 45 2
f1 60 3
f1 78 4
f2 84 2
f1 92 5
f2 97 3
..

You can get a graph input file for a single chunk download usinggrep. For example:

grep f1 problem2-peer.txt > f1.dat

You can then rungnuploton any andrew machine, which will give you a gnuplot prompt. To draw a plot of the file
above, use the command:

plot "f1.dat" using 2:3 title ’flow 1’ with lines

For more information about how to use gnuplot, seehttp://www.duke.edu/∼hpgavin/gnuplot.html.

6.3 Task 3 - Optimizations: Intelligent Peer Selection and Caching

Extra Credit / Competition Section
For this section, we will measure how well you can optimize the speed with which files are transferred across

different network topologies. We will keep different chunks of the file at various peers, and then make a number of
other peers fetch the files. You should use some heuristics toload balance across different peers, fetch chunks from a
peer having more throughput than others, etc. For example inthe Figure 4(b) the peer A and B could fetch different
chunks from D,E and then they can share those chunks between themselves. Since A and B are close together, they
will have much better throughput than getting the chunks directly from D and E.

To test this we will distribute the file into different nodes and then sum the time taken to collect the file at each
node. There will be a competition across the class and the group/groups taking the least time will get maximum grade
(and prizes!). Some things to think about:

• Having peers cache the entries they have downloaded and offer them to others is a simple way to have more
peers to choose amoong.

• Fast Recovery will help you make better use of the network links while still being TCP friendly.

• Some nodes have faster links connecting them than do others

• Available bandwidth may change

• A peer node may go away. You should quickly recognized this and switch to any other peer who has this same
block.

12

7 Spiffy: Simulating Networks with Loss & Congestion

To test your system, you will need more interesting networksthat can have loss, delay, and many nodes causing
congestion. To help you with this, we created a simple network simulator called “Spiffy” which runs completely
on your local machine. The simulator is implemented byhupsim.pl, which creates a series of links with limited
bandwidth and queue sized between nodes specified by the filetopo.map (this allows you to test congestion control).
To send packets on your virtual network, change your sendto() system calls to spiffysendto(). spiffysendto() tags
each packet with the id of the sender, then sends it to the portspecified bySPIFFY ROUTER environment variable.
hupsim.pl listens on that port (which needs to be specified when runninghupsim.pl), and depending on the identity
of the sender, it will route the packet through the network specified bytopo.map and to the correct destination. You
hand spiffysendto() the exact same packet that you would hand to the normal UDPsendto() call. All packets
should be sent using spiffy and spiffysendto().

7.1 hupsim.pl

hupsim.pl has four parameters which you must set.

hupsim.pl -m <topology file> -n <nodes file> -p <listen port> -v <verbosity>

• <topology file>: This is the file containing the configuration of the network that hupsim.pl will create. An
example is given to you astopo.map. The ids in the file should match the ids in the<nodes file>. The format
is:

src dst bw delay queue-size

The bw is the bandwidth of the link in bits per second. The delay is the delay in milliseconds. The queue-size is
in packets. Your code isNOT allowed to read this file. If you need values for network characteristics like RTT,
you must infer them from network behavior.

• <nodes file>: This is the file that contains configuration information forall nodes in the network. An example
is given to you asnodes.map.

• <listen port>: This is the port thathupsim.pl will listen to. Therefore, this port should be DIFFERENT than
the ports used by the nodes in the network.

• <verbosity>: How much debugging messages you want to see fromhupsim.pl. This should be an integer
from 1-4. Higher value means more debugging output.

7.2 Spiffy Example

We have created a sample server and client which uses spiffy to pass messages around as a simple example. The
server.c and client.c files are available on the project website.

7.2.1 To make:

gcc -c spiffy.c -o spiffy.o
gcc server.c spiffy.o -o server
gcc client.c spiffy.o -o client

7.2.2 Usage:

usage: ./server <node id> <port>
usage: ./client <my node id> <my port> <to port> <magic number>

Since server and client use spiffy, you must specify the<node id> and<port> to matchnodes.map. <magic
number> is a number we put into the packet header and the server will print the magic number of the packet it receives.

13

7.2.3 Example run:

This example assumes you did not modify nodes.map or topo.map that was given.

setenv SPIFFY_ROUTER 127.0.0.1:12345
./hupsim.pl -m topo.map -n nodes.map -p 12345 -v 0 &
./server 1 48001 &
./client 2 48002 48001 123

The client will print

Sent MAGIC: 123

and the server will print

MAGIC: 123

8 Grading

This information is subject to change, but will give you a high-level view of how points will be allocated when grading
this assignment. Notice that many of the points are for basicfile transmission functionality and simple congestion
control. Make sure these work well before moving to more advanced functionality or worrying about corner-cases.

• Search for and reliably retrieve files [40 points]: the peer program should be able to search for chunks and
request them from the remote peers. We will test if the outputfile is exactly the same as the file peers are
sharing. Note, in addition to implementing WHOHAS, IHAVE, and GET, this section requires reliability to
handle packet loss.

• Basic congestion control [20 points]:The peer should be able to do the basic congestion control by imple-
menting the basic “Slow Start” and “Congestion Avoidance” functionality for common cases.

• Support and Utilize Concurrent Transfers [30 points]: The peer should be able to send and retrieve content
from more than one node simultaneously (note: this doesnot imply threads!). Your peers should simultaneously
take advantage of all nodes that have useful data, instead ofsimply downloading a chunk from one host at a
time.

• Congestion control corner cases [20 points]:The congestion control should be robust. It must handle issues
like lost ACKs, multiple losses, out of order packets, etc. Additionally, it should have Fast Retransmit. We will
stress test your code and look for tricky corner cases.

• Robustness: [10 points]

1. Peer crashes: Your implementation should be robust to crashing peers, and should attempt to download
interrupted chunks from other peers.

2. General robustness: Your peer should be resilient to peers that send corrupt data, etc.

Note: While robustness is important, do not spend so much timeworrying about corner cases that you do not
complete the main functionality!

• Style [15 points]: Well-structured, well documented, clean code, with well defined interfaces between com-
ponents. Appropriate use of comments, clearly identified variables, constants, function names, etc. Use of
provided debugging functions using different “debug levels” within the code.

• Selective Acknowledgements [10 points, extra credit]:Implement SACK for better congestion recovery. In
SACK, in addition to sending the cumulative acknowledgmentfor all the packets received so far, the receiver
sends the list of packets it has in its sliding window buffer.This provides the sender more information about
which packets were lost in transmission. SACK is described in RFC 2018.

14

• Highly Efficient Downloads [up to 20 points, extra credit] You should implement heuristics and protocol
techniques that will help your peers transfer files faster inreasonable scenarios and topologies. We will measure
the average download speed for multiple uploading and multiple downloading peers at the same time. For
example, peers may determine optimal peers to download from(instead of choosing randomly), and update the
optimal peers list on the fly. Other strategies could includefast failure detection and pre-fetching blocks. Points
will be awarded only if you document your mechanisms in the readme, and provide graphs and reproducible test
cases that show your optimizations providing benefit compared to the basic implementation.

In addition to these points, we have assigned 20 points for the two graded checkpoints.

Checkpoint Deadline Description
Checkpoint 1 [10 points] April 3 You must be able to generate WHOHAS queries and correctly

respond (if needed) with an IHAVE for a simple configuration
of two hosts. You can assume that there is no loss in the
network.

Checkpoint 2 [0 points] April 10 You must be able to send a GET request and download an en-
tire chunk from another peer within a simple two host network.
Use a simple stop-and-wait protocol where hosts send a single
packet, and wait for an ACK before sending another.Again,
assume no network loss.

Checkpoint 3 [10 points] April 17 You must implement sliding window flow control with a win-
dow size of 8 packets. You must also implement timeouts and
retransmission for reliable delivery. Use the spiffy router to test
your network with loss.

Checkpoint 4 [0 points] April 24 Implement simple congestion avoidance. Start the window off
at size one, and increase the window one packet for every win-
dow of data that is acked without a loss. After any loss, reduce
the window to one packet, and begin again.Note: This check-
point is a little late. You should be farther along in the project
by this point, especially if you are planning on making the early
deadline.

Early bird deadline [10 extra points] April 27 If you turn in your project by this date, you will receive a bonus
of 10 extra points. This deadline applies only to the required
functionality (ie: the ‘final’ svn tag). Extra credit and com-
petition submissions may be submitted up to the late deadline
without sacrificing the early-bird bonus.

Late deadline May 1 If you turn in your project by this date, you will not receive any
penalty. Regular late penalty of 10% per day will be deducted
if you turn in your project after this date. Extra credit and com-
petition tags must be submitted by this deadline to count.

9 Handin

As in projects 1 and 2, code submission for checkpoints and the final deadline will be done through your subversion
repositories. You will receive an email with your Team#, Person#, and associated password soon after the assignment
is posted. You can check out your subversion repository withthe following command where you must change your
Team# to “Team1” for instance, and your P# to the correct number such as “P1”:

svn co https://moo.cmcl.cs.cmu.edu/441/svn/Project3Team# — username Project3Team#P#

The grader will check directories in your repository for grading, which can be created with an “svn copy”:

• Checkpoint X– YOUR REPOSITORY/tags/checkpointX

15

• Final Handin– YOUR REPOSITORY/tags/final

• Contest Handin (optional)– YOUR REPOSITORY/tags/contest

• Extra Credit (optional)– YOUR REPOSITORY/tags/extracredit

For checkpoints, you will be expected to have a working Makefile, and whatever source needed to compile a working
binary. Checkpoints that do not compile will NOT be graded.Any extra credit functionality should be handed in
using the ‘extracredit’ tag or the ’contest tag’ (indicate in your readme). The “final” tag should contain the following
files that implement all required functionality:

• Makefile – Make sure all the variables and paths are set correctly such that your program compiles in the hand-in
directory. Makefile should build the executable “peer” thatruns on the andrew machines.

• All of your source code files.

• readme.txt: File containing a thorough description of yourdesign and implementation. If you use any additional
packet headers, please document them here. Include documentation of your test cases, any known bugs, and
a sample output of your problem2-peer.txt. Also, please list any extra credit parts that you have implemented
here, as well as test-cases and graphs you committed to demonstrate the value of your optimizations.

10 How to succeed in this assignment

Some tips that will help you succeed with this assignment. First, look back at past recitation slides regarding concepts
like code design, scripting, compilation, debugging and version control. You should also consider:

• Start early! We cannot stress how important it is to start early in a project. It will give you more time to think
about the problems, discuss with your colleagues, and ask questions on bulletinboard. You will be busy with
lots of other work around the end of the semester, so do what you can to lighten to the load now!

• Check the bboards and FAQ religiously,even before you run into a problem! Seeing questions and issues
raised by other groups can help you anticipate and avoid having the same problembeforeyou waste your own
time on it.

• Get help from course staff. Come to office hours, ask for clarifications on the bulletin board. The earlier you
ask for help, the more time we will have to help you. If you anticipate a major problem (partner, code, etc...)
contact well in advance of the next checkpoint.

• Modularize: Split the problem into different modules. Tackle one problem at a time and build on functionality
only once it is completely solid and tested. This reduces thenumber of places you have to search to find the
source of a bug. Define the interfaces between the modules also helps you and your partner make progress in
parallel.

• Write Unit Tests: Code often has mistakes that are easy to spot when you are working on small units. Write
small “main” function to test drive a very specific part of thecode and see if that works properly. For small stuff,
you can conditionally compile these tests in the same file in which you have defined them:

#if TESTING
int main() {

test_foo();
}
#endif

and compile the code in a makefile that includes:

16

TESTDEFS="-DTESTING=1"

foo_test.o: foo.c Makefile
$(CC) $(TESTDEFS) -c foo.c -o $@

foo_test: foo_test.o
$(CC) foo_test.o -o $@

Or you can write separate “testfoo.c” files that use the functions in the foo file. The advantage to this is that it
also enforces better modularization—your hash table goes inhashtable.c, your hashtable tests in testhashtable.c,
and so on.

• Know about TCP: Knowing TCP’s congestion control mechanism will help you develop that part of the project.

• Comment your code. Writing documentation is not a waste of time. It makes the code more readable when you
have come back to it later, and is a good way to communicate your thoughts to your partner (but don’t comment
the obvious— simple code speaks for itself)

GOOD LUCK (and get started) !!!

17

