
1

Design & Modularity

15-441 Recitation 3
Dave Andersen

Carnegie Mellon University

Thinking about Design

• How do you start thinking about how a
program should work?

• Data-centric programs:
– What data does it operate on?
– How does it store it?
– Examples?

• Protocol-centric programs
– How they interact with the rest of the world
– (Maybe “Interface-centric”)

• (Not exclusive! Think about IRC server)

Design Principles

• Goal: once again, pain management

• Be able to develop independently
• Avoid the big brick end-of-semester wall
• Stay motivated

P1: Don’t Repeat Yourself

• Aka “DRY”
• Like factoring out common terms…
• If you’re copy/pasting code or writing

“similar feeling” code, perhaps it should
be extracted into its own chunk.

• Small set of orthogonal interfaces to
modules

P2: Hide Unnecessary Details

• aka, “write shy code”
– Doesn’t expose itself to others
– Doesn’t stare at others’ privates
– Doesn’t have too many close friends

• Benefit:
– Can change those details later without

worrying about who cares about them

Example 1:
• int send_message_to_user(

 struct user *u,

 char *message)

• int send_message_to_user(

 int user_num,

 int user_sock,

 char *message)

2

Example 2

int send_to_user(char *uname, char *msg){
 …
 struct user *u;
 for (u = userlist; u != NULL; u = u->next) {
 if (!strcmp(u->username, uname)

 …

Consider factoring into:
 struct user *find_user(char *username)

• Hides detail that users are in a list
– Could re-implement as hash lookup if bottleneck

• Reduces size of code / duplication / bug count
– Code is more self-explanatory (“find_user” obvious), easier to read, easier

to test

P3: Keep it Simple

• We covered in previous recitation, but
– Don’t prematurely optimize

• Even in “optimization contest”, program speed
is rarely a bottleneck

• Robustness is worth more points than speed!
– Don’t add unnecessary features

• (Perhaps less pertinent in 441)

P3.1: Make a few bits good

• Some components you’ll use again
– Lists, containers, algorithms, etc.

• Spend the time to make these a bit
more reusable
– Spend 20% more time on component

during project 1
– Save 80% time on project 2…

P4: Be consistent

• Naming, style, etc.
– Doesn’t matter too much what you choose
– But choose some way and stick to it
– printf(str, args) fprintf(file,
str, args)

– bcopy(src, dst, len) memcpy(dst,
src, len)

• Resources: Free where you allocate
– Consistency helps avoid memory leaks

Error handling

• Detect at low level, handle high
– Bad:
 malloc() { … if (NULL) abort(); }
– Appropriate action depends on program
– Be consistent in return codes and

consistent about who handles errors

Incremental Happiness

• Not going to write program in one sitting
• Cycle to go for:

– Write a bit
– Compile; fix compilation errors
– Test run; fix bugs found in testing

• Implies frequent points of “kinda-
working-ness”

3

Development Chunks

• Identify building blocks (structures, algos)
– Classical modules with clear functions
– Should be able to implement some with rough

sketch of program design
• Identify “feature” milestones

– Pare down to bare minimum and go from there
– Try to identify points where testable
– Helps keep momentum up!

• Examples from IRC server?

Testability

• Test at all levels
– Recall goal: reduced pain!
– Bugs easiest to find/correct early and in

small scope. Ergo:
• Unit tests only test component (easier to locate)
• Early tests get code while fresh in mind
• Write tests concurrently with code. Or before!

– Also need to test higher level functions
• Scripting languages work well here

441 Testability

• Unit test examples:
– Your hash, list, etc., classes
– Machinery that buffers input for line-based

processing
– Command parser
– Routing table insert/lookup/etc.
– Others?

Bigger tests

• More structured test framework early
– “Connect” test (does it listen?)
– Alternate port # test (cmd line + listen)

– …

Testing Mindset

• Much like security: Be Adversarial
• Your code is the enemy. Break it!

– Goal of testing is not to quickly say “phew,
it passes test 1, it must work!”

– It’s to ensure that 5 days later, you don’t
spend 5 hours tracking down a bug in it

• Think about the code and then write
tests that exercise it. Hit border cases.

Testing a Hash Table

• Insert an item and retrieve it
– Why?

• Insert two items and retrieve both
– Why?

[help me fill in this list!]
Note ordering: Simple to complex…

4

Design & Debugging

• Covering more next week, but…
• Strongly, strongly encourage people to

use a consistent DEBUG()-like macro
for debugging

• Leave your debugging output in
• Make it so you can turn it on/off

