

15-441: Computer Networking

Wireless Networking

Outline

Wireless Challenges

802.11 Overview

Link Layer

Ad-hoc Networks

Assumptions made in Internet

- Host are (mostly) stationary
 - Address assignment, routing
- Links in the network are fairly homogeneous
 - Transport protocols, applications
- Hosts are fairly powerful
 - End to end principle: push functionality to end points
- Security is an end host issue
 - No security inside the network (architecturally)

Mobility

- Many clients today are mobile
- Mobility inside a subnet is supported
 - E.g. moving across APs that are part of a single EBSS
- Mobility across subnets is harder because the IP address is used as address and identifier
 - Identifier: who you are
 - Address: where you can be found
- Keep IP address: network gets confused
 - Delivers packets to wrong "old" subnet
- New IP address: host gets confused
 - Transport protocols, applications, etc.

Link Heterogeneity

- Original links were basically telephone lines
- Today: huge diversity
 - Optical fiber (wavelengths) ... copper ... wireless
- Need to share airwaves rather than wire
 - Don't know what hosts are involved
 - Host may not be using same link technology
 - Wireless is generally slow
 - Error characteristics: higher on wireless attenuation, interference, multipath
 - Latency: absolute delay and variance in delay
- Mobility adds to diversity
 - E.g. hand off can cause delays and sudden changes in available bandwidth

Device Capabilities

- Originally: mainframes and personal computers
- Today: sensors ... supercomputers
- Note: almost any networked device today is more capable than early computers!
 - But our requirements and expectations have increased
 - Anything at or above "PC class" is very capable
- Laptop: view as mobile PC
- PDA: view as 5 year old PC (kind of)
- Cell phone: not even close to a PC
- Sensors: often run as private networks

Security

- Access to the network enables all kinds of attacks
 - Argues for pushing security inside the network
 - Firewalls are a very ad hoc way of doing this
- Wireless creates unique challenges
 - Do not need physical connection to sniff or send
 - WEP, 802.1x, etc.
- But wireless security needs to be linked into system wide security

Overview

Wireless Challenges

802.11 Overview

Link Layer Challenges

Ad-hoc Networks

IEEE 802.11 Wireless LAN

- 802.11b
 - 2.4-2.5 GHz unlicensed radio spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code
 - widely deployed, using base stations

- 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- 802.11g
 - 2.4-2.5 GHz range
 - up to 54 Mbps
- All use CSMA/CA for multiple access
- All have base-station and ad-hoc network versions

IEEE 802.11 Wireless LAN

- IEEE 802.11a
 - PHY Standard: 8 channels: up to 54 Mbps: some deployment
- IEEE 802.11b
 - PHY Standard: 3 channels: up to 11 Mbps: widely deployed.
- IEEE 802.11d
 - MAC Standard : support for multiple regulatory domains (countries)
- IEEE 802.11e
 - MAC Standard : QoS support : supported by many vendors
- IEEE 802.11f
 - Inter-Access Point Protocol : deployed
- IEEE 802.11g
 - PHY Standard: 3 channels: OFDM and PBCC: widely deployed (as b/g)
- IEEE 802.11h
 - Suppl. MAC Standard: spectrum managed 802.11a (TPC, DFS): standard
- IEEE 802.11i
 - Suppl. MAC Standard: Alternative WEP: standard
- IEEE 802.11n
 - MAC Standard: MIMO: standardization expected late 2008

IEEE 802.11 Wireless LAN

- · Wireless host communicates with a base station
 - Base station = access point (AP)
- Basic Service Set (BSS) (a.k.a. "cell") contains:
 - Wireless hosts
 - Access point (AP): base station
- BSS's combined to form distribution system (DS)

Ad Hoc Networks

- Ad hoc network: IEEE 802.11 stations can dynamically form network without AP
- Applications:
 - Vehicles exchange information (VANET)
 - Laptops meeting in conference room, car
 - Interconnection of "personal" devices

Overview

Wireless Challenges

802.11 Overview

Link Layer Challenges

Ad-hoc Networks

CSMA/CD Does Not Work

- Collision detection problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
 - Hard to build a radio that can transmit and receive at same time

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 CSMA: sender

 If sense channel idle for DISF (Distributed Inter Frame Space)

then transmit entire frame (no collision detection)

 If sense channel busy then binary backoff

802.11 CSMA receiver:

If received OK
return ACK after SIFS
(Short IFS)
(ACK is needed due to lack of collision detection)

IEEE 802.11 MAC Protocol

802.11 CSMA Protocol: others

- NAV: Network Allocation Vector
- 802.11 frame has transmission time field
- Others (hearing data) defer access for NAV time units

Collision Avoidance Mechanisms

Problem:

- Two nodes, hidden from each other, transmit complete frames to base station
- Wasted bandwidth for long duration!

Solution:

- Small reservation packets
- Nodes track reservation interval with internal "network allocation vector" (NAV)

Collision Avoidance: RTS-CTS Exchange

- Explicit channel reservation
 - Sender: send short RTS: request to send
 - Receiver: reply with short CTS: clear to send
 - CTS reserves channel for sender, notifying (possibly hidden) stations
- RTS and CTS short:
 - collisions less likely, of shorter duration
 - end result similar to collision detection
- Avoid hidden station collisions
- Not widely used/implemented
 - Consider typical traffic patterns

Overview

Wireless Challenges

802.11 Overview

Link Layer Challenges

Ad-hoc Networks

Ad Hoc Networks

- All the challenges of wireless, plus some of:
 - No fixed infrastructure
 - Mobility (on short time scales)
 - Chaotically decentralized (:-)
 - Multi-hop!
- Nodes are both traffic sources/sinks and forwarders
- The big challenge: Routing

Ad Hoc Routing

- Find multi-hop paths through network
 - Adapt to new routes and movement / environment changes
 - Deal with interference and power issues
 - Scale well with # of nodes
 - Localize effects of link changes

Traditional Routing vs Ad Hoc

- Traditional network:
 - Well-structured
 - ~O(N) nodes & links
 - All links work ~= well

- N^2 links but many stink!
- Topology may be really weird
 - Reflections & multipath cause strange interference
- Change is frequent

Problems using DV or LS

- DV loops are very expensive
 - Wireless bandwidth << fiber bandwidth...
- LS protocols have high overhead
- N^2 links cause very high cost
- Periodic updates waste power
- Need fast, frequent convergence

Proposed protocols

- Destination-Sequenced Distance Vector (DSDV)
- Dynamic Source Routing (DSR)
- Ad Hoc On-Demand Distance Vector (AODV)

Let's look at DSR

DSR

- Source routing
 - Intermediate nodes can be out of date
- On-demand route discovery
 - Don't need periodic route advertisements

 (Design point: on-demand may be better or worse depending on traffic patterns...)

DSR Components

- Route discovery
 - The mechanism by which a sending node obtains a route to destination
- Route maintenance
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid

DSR Route Discovery

- Route discovery basic idea
 - Source broadcasts route-request to Destination
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - Target is found, or
 - A node that has a route to Destination is found

C Broadcasts Route Request to F

C Broadcasts Route Request to F

H Responds to Route Request

C Transmits a Packet to F

Forwarding Route Requests

- A request is forwarded if:
 - Node is not the destination
 - Node not already listed in recorded source route
 - Node has not seen request with same sequence number
 - IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to Source

Route Cache

- All source routes learned by a node are kept in Route Cache
 - Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

Sending Data

- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
- Periodic messages avoided
- But need to buffer packets
- How do you decide between links?

Forwarding Packets is expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - A -> B -> C
 - A -> B -> C -> D ?
 - Assume minimum power for radios.

Routing metric should take this into account

ETX

- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = 1 / (df * dr) (ACK must be delivered too)
- Link ETX = 1 / P(delivery)
- Route ETX = sum of link ETX
- (Assumes all hops interfere not true, but seems to work okay so far)

Capacity of multi-hop network

- Assume N nodes, each wants to talk to everyone else. What total throughput (ignore previous slide to simplify things)
 - O(n) concurrent transmissions. Great! But:
 - Each has length O(sqrt(n)) (network diameter)
 - So each Tx uses up sqrt(n) of the O(n) capacity.
 - Per-node capacity scales as 1/sqrt(n)
 - Yes it goes down! More time spent Tx'ing other peoples packets...
- But: If communication is local, can do much better, and use cool tricks to optimize

Important Lessons

- Many assumptions built into Internet design
 - Wireless forces reconsideration of issues
- Link-layer
 - Spatial reuse (cellular) vs wires
 - Hidden/exposed terminal
 - CSMA/CA (why CA?) and RTS/CTS
- Network
 - Mobile endpoints how to route with fixed identifier?
 - Link layer, naming, addressing and routing solutions
 - What are the +/- of each?