
Security Part One:
Network Attacks and Countermeasures

Xin Zhang

Flashback: Internet design goals

1. Interconnection
2. Failure resilience
3. Multiple types of service
4. Variety of networks
5. Management of resources
6. Cost-effective
7. Low entry-cost
8. Accountability for resources
Where is security?

Why did they leave it out?

• Designed for connectivity

• Network designed with implicit trust
No “bad” guys

• Can’t security requirements be provided at
the edge?

Encryption, Authentication etc.
End-to-end arguments in system design

Security Vulnerabilities

• At every layer in the protocol stack!

• Network-layer attacks
IP-level vulnerabilities
Routing attacks

• Transport-layer attacks
TCP vulnerabilities

• Application-layer attacks

IP-level vulnerabilities

• IP addresses are specified by the source
Spoofing attacks!

• Use of IP address for authentication
e.g., .rhosts, some web sites

• Some IP features that have been exploited
Fragmentation Attacks
Smurf Attacks

Routing attacks

• Divert traffic to malicious nodes
Black-hole attack
Dropping or Eavesdropping

• How to implement routing attacks?
Distance-Vector

Announce low-cost routes

• BGP vulnerabilities
Prefix hijacking
Path alteration

TCP-level attacks

• SYN-Floods
Implementations create state at servers before
connection is fully established
Limited # slots get exhausted

• Session resets
Close a legitimate connection

• Session hijack
Pretend to be a trusted host
Sequence number guessing

Session Hijack

Trusted (T)

Malicious (M)

Server

1.S
YN (IS

N_M
)

SRC = M

2.S
YN(IS

N_S
1),

ACK(IS
N_M

)

First send a legitimate
SYN to server

Session Hijack

Trusted (T)

Malicious (M)

Server

1.S
YN (IS

N_M
)

SRC = T

2.SYN(ISN_S2),

ACK(ISN_M)

3.A
CK(IS

N_S
2)

SRC = T

Using ISN_S1 from earlier
connection guess ISN_S2!
Needs to prevent T from RST-ing

Outline

• Security Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

Denial of Service

• Make a service unusable, usually by
overloading the server or network

• Disrupt service by taking down hosts
• Consume host-level resources

E.g., SYN-floods
• Consume network resources

E.g., UDP/ICMP floods

Simple DoS

Attacker Victim

• Attacker generates lots of traffic

Lots of traffic

• Attacker usually spoofs source address
to hide origin

• Think of a simple solution?

Distributed DoS

Attacker

Handler Handler

Agent Agent Agent Agent Agent

Victim

Distributed DoS

• Handlers are usually high volume servers
Easy to hide the attack packets

• Agents are usually home users with DSL/Cable
Already infected and the agent installed

• Very difficult to track down the attacker
Multiple levels of indirection!

• Aside: How to distinguish DDoS from a
Flash Crowd?

Flash Crowd Many clients using a service
Slashdot Effect

Smurf Attack

Attacking System

InternetInternet

Broadcast
Enabled
Network

Broadcast
Enabled
Network

Victim System

Ping to a broadcast IP from the (spoofed) source address of
the victim ICMP Ping

Dst: bcast addr of remote net
Src: Victim

Reflector Attack

Attacker

Agent Agent

Reflector Reflector Reflector Reflector Reflector

Victim

Src = Victim
Destination = Reflector

Src = Reflector
Destination = Victim

Unsolicited traffic at victim from legitimate hosts

Outline

• Security Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

Worm Overview

• Self-propagate through network
• Typical Steps in Worm Propagation

Probe host for vulnerable software
Exploit the vulnerability

E.g., Sends bogus input (for buffer overflow – how does it work?)
Attacker can do anything that the privileges of the buggy program
allow

Launches copy of itself on compromised host
• Spread at exponential rate

10M hosts in < 5 minutes
Hard to deal with manual intervention

Worm or Virus?

Probing Techniques

• Random Scanning
• Local Subnet Scanning
• Routing Worm
• Pre-generated Hit List
• Topological

Random Scanning

• 32 bit number is randomly generated and
used as the IP address

Aside: IPv6 worms will be different …
• E.g., Slammer and Code Red I
• Hits black-holed IP space frequently

Only 28.6% of IP space is allocated
Aside: can track worms by monitoring unused
addresses

Honeypots

Subnet Scanning

• Generate last 1, 2, or 3 bytes of IP address
randomly

• Code Red II and Blaster
• Some scans must be completely random to

infect whole internet

Routing Worm

• BGP information can tell which IP address
blocks are allocated

• This information is publicly available
http://www.routeviews.org/
http://www.ripe.net/ris/

Hit List

• Hit list of vulnerable machines is sent with
payload

Determined before worm launch by scanning
• Gives the worm a boost in the starting phase
• Can avoid detection by the early detection

systems

Topological

• Uses info on the infected host to find the
next target

Morris Worm used /etc/hosts , .rhosts
Email address books
P2P software usually store info about peers that
each host connects to

Some proposals for countermeasures

• Better software safeguards
Static analysis and array bounds checking (lint/e-fence)
Safe versions of library calls

gets(buf) -> fgets(buf, size, ...)
sprintf(buf, ...) -> snprintf(buf, size, ...)

• Host-level solutions
E.g., Memory randomization, Stack guard

• Host-diversity
Avoid same exploit on multiple machines

• Network-level: IP address space randomization
Make scanning ineffective

• Rate-limiting: Contain the rate of spread
• Dynamic quarantine: Isolate infected hosts
• Content-based filtering: signatures in packet payloads

Outline

• Security, Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

Countermeasure Overview

• High level basic approaches
Prevention
Detection
Resilience

• Requirements
Security: soundness / completeness (false
positive / negative
Overhead
Usability

Design questions ..

• Why is it so easy to send unwanted traffic?
Worm, DDoS, virus, spam, phishing etc

• Where to place functionality for stopping
unwanted traffic?

Edge vs. Core
Routers vs. Middleboxes

• Redesign Internet architecture to detect
and prevent unwanted traffic?

Firewalls

• Lots of vulnerabilities on hosts in network
• Users don’t keep systems up to date

Lots of patches
Zero-day exploits

• Solution
Limit access to the network
Put firewalls across the perimeter of the network

Firewalls (contd…)

• Firewall inspects traffic through it
• Allows traffic specified in the policy
• Drops everything else
• Two Types

Packet Filters, Proxies

InternetInternet

Internal Network
Firewall

Packet Filters

• Selectively passes packets from one network
interface to another

• Usually done within a router between external and
internal network

• What to filter based on?
Packet Header Fields

IP source and destination addresses
Application port numbers
ICMP message types/ Protocol options etc.

Packet contents (payloads)

Packet Filters: Possible Actions

• Allow the packet to go through

• Drop the packet (Notify Sender/Drop Silently)

• Alter the packet (NAT?)

• Log information about the packet

Some examples

• Block all packets from outside except for
SMTP servers

• Block all traffic to/from a list of domains
• Ingress filtering

Drop all packets from outside with addresses inside
the network

• Egress filtering
Drop all packets from inside with addresses outside
the network

Firewall implementation

• Stateless packet filtering firewall
• Rule (Condition, Action)
• Rules are processed in top-down order

If a condition satisfied – action is taken

Packet Filters

• Advantages
Transparent to application/user
Simple packet filters can be efficient

• Disadvantages
Security
Overhead (speed)
Usability

Very hard to configure the rules
Doesn’t have enough information to take actions (Does port 22 always
mean SSH? Who is the user accessing the SSH?)

Alternatives

• Stateful packet filters
Keep the connection states
Easier to specify rules
Problems?

State explosion
State for UDP/ICMP?

• Proxy Firewalls
Two connections instead of one
Either at transport level

SOCKS proxy
Or at application level

HTTP proxy

Intrusion Detection Systems

• Firewalls allow traffic only to legitimate hosts
and services

• Traffic to the legitimate hosts/services can
have attacks

• Solution?
Intrusion Detection Systems
Monitor data and behavior
Report when identify attacks

Classes of IDS

• What type of analysis?
Signature-based
Anomaly-based

• Where is it operating?
Network-based
Host-based

Summary

• Security vulnerabilities are real!
Protocol or implementation or bad specs
Poor programming practices
At all layers in protocol stack

• DoS/DDoS
Resource utilization

• Worm
Exponential spread
Scanning strategies

• Firewall/IDS
Counter-measures to protect hosts
Fail-open vs. Fail-close?

	Security Part One:�Network Attacks and Countermeasures
	Flashback: Internet design goals
	Why did they leave it out?
	Security Vulnerabilities
	IP-level vulnerabilities
	Routing attacks
	TCP-level attacks
	Session Hijack
	Session Hijack
	Outline
	Denial of Service
	Simple DoS
	Distributed DoS
	Distributed DoS
	Smurf Attack
	Reflector Attack
	Outline
	Worm Overview
	Probing Techniques
	Random Scanning
	Subnet Scanning
	Routing Worm
	Hit List
	Topological
	Some proposals for countermeasures
	Outline
	Countermeasure Overview
	Design questions ..
	Firewalls
	Firewalls (contd…)
	Packet Filters
	Packet Filters: Possible Actions
	Some examples
	Firewall implementation
	Packet Filters
	Alternatives
	Intrusion Detection Systems
	Classes of IDS
	Summary

