Security Part One: Network Attacks and Countermeasures

Xin Zhang

Flashback: Internet design goals

- 1. Interconnection
- 2. Failure resilience
- 3. Multiple types of service
- 4. Variety of networks
- 5. Management of resources
- 6. Cost-effective
- 7. Low entry-cost
- 8. Accountability for resources

Where is security?

Why did they leave it out?

Designed for connectivity

- Network designed with implicit trust
 - No "bad" guys
- Can't security requirements be provided at the edge?
 - Encryption, Authentication etc.
 - End-to-end arguments in system design

Security Vulnerabilities

- At every layer in the protocol stack!
- Network-layer attacks
 - IP-level vulnerabilities
 - Routing attacks
- Transport-layer attacks
 - TCP vulnerabilities

Application-layer attacks

IP-level vulnerabilities

- IP addresses are specified by the source
 - Spoofing attacks!
- Use of IP address for authentication
 - e.g., .rhosts, some web sites
- Some IP features that have been exploited
 - Fragmentation Attacks
 - Smurf Attacks

Routing attacks

- Divert traffic to malicious nodes
 - Black-hole attack
 - Dropping or Eavesdropping
- How to implement routing attacks?
 - Distance-Vector
 - Announce low-cost routes

- BGP vulnerabilities
 - Prefix hijacking
 - Path alteration

TCP-level attacks

- SYN-Floods
 - Implementations create state at servers before connection is fully established
 - Limited # slots get exhausted
- Session resets
 - Close a legitimate connection
- Session hijack
 - Pretend to be a trusted host
 - Sequence number guessing

Session Hijack

Session Hijack

Outline

Security Vulnerabilities

Denial of Service

Worms

Countermeasures: Firewalls/IDS

Denial of Service

- Make a service unusable, usually by overloading the server or network
- Disrupt service by taking down hosts
- Consume host-level resources
 - E.g., SYN-floods
- Consume network resources
 - E.g., UDP/ICMP floods

Simple DoS

Attacker generates lots of traffic

Think of a simple solution?

 Attacker usually spoofs source address to hide origin

Distributed DoS

Distributed DoS

- Handlers are usually high volume servers
 - Easy to hide the attack packets
- Agents are usually home users with DSL/Cable
 - Already infected and the agent installed
- Very difficult to track down the attacker
 - Multiple levels of indirection!
- Aside: How to distinguish DDoS from a Flash Crowd?
 - ◆ Flash Crowd → Many clients using a service
 - Slashdot Effect

Smurf Attack

Ping to a broadcast IP from the (spoofed) source address of

Reflector Attack

Unsolicited traffic at victim from legitimate hosts

Outline

Security Vulnerabilities

Denial of Service

Worms

Countermeasures: Firewalls/IDS

Worm Overview

- Self-propagate through network
- Typical Steps in Worm Propagation
 - Probe host for vulnerable software
 - Exploit the vulnerability
 - E.g., Sends bogus input (for buffer overflow how does it work?)
 - Attacker can do anything that the privileges of the buggy program allow
 - Launches copy of itself on compromised host
- Spread at exponential rate
 - 10M hosts in < 5 minutes
 - Hard to deal with manual intervention

Worm or Virus?

Probing Techniques

- Random Scanning
- Local Subnet Scanning
- Routing Worm
- Pre-generated Hit List
- Topological

Random Scanning

- 32 bit number is randomly generated and used as the IP address
 - Aside: IPv6 worms will be different ...
- E.g., Slammer and Code Red I
- Hits black-holed IP space frequently
 - Only 28.6% of IP space is allocated
 - Aside: can track worms by monitoring unused addresses
 - Honeypots

Subnet Scanning

- Generate last 1, 2, or 3 bytes of IP address randomly
- Code Red II and Blaster
- Some scans must be completely random to infect whole internet

Routing Worm

- BGP information can tell which IP address blocks are allocated
- This information is publicly available
 - http://www.routeviews.org/
 - http://www.ripe.net/ris/

Hit List

- Hit list of vulnerable machines is sent with payload
 - Determined before worm launch by scanning
- Gives the worm a boost in the starting phase
- Can avoid detection by the early detection systems

Topological

- Uses info on the infected host to find the next target
 - Morris Worm used /etc/hosts , .rhosts
 - Email address books
 - P2P software usually store info about peers that each host connects to

Some proposals for countermeasures

- Better software safeguards
 - Static analysis and array bounds checking (lint/e-fence)
 - Safe versions of library calls
 - gets(buf) -> fgets(buf, size, ...)
 - sprintf(buf, ...) -> snprintf(buf, size, ...)
- Host-level solutions
 - E.g., Memory randomization, Stack guard
- Host-diversity
 - Avoid same exploit on multiple machines
- Network-level: IP address space randomization
 - Make scanning ineffective
- Rate-limiting: Contain the rate of spread
- Dynamic quarantine: Isolate infected hosts
- Content-based filtering: signatures in packet payloads

Outline

Security, Vulnerabilities

Denial of Service

Worms

Countermeasures: Firewalls/IDS

Countermeasure Overview

- High level basic approaches
 - Prevention
 - Detection
 - Resilience
- Requirements
 - Security: soundness / completeness (false positive / negative
 - Overhead
 - Usability

Design questions ..

- Why is it so easy to send unwanted traffic?
 - Worm, DDoS, virus, spam, phishing etc
- Where to place functionality for stopping unwanted traffic?
 - Edge vs. Core
 - Routers vs. Middleboxes
- Redesign Internet architecture to detect and prevent unwanted traffic?

Firewalls

- Lots of vulnerabilities on hosts in network
- Users don't keep systems up to date
 - Lots of patches
 - Zero-day exploits
- Solution
 - Limit access to the network
 - Put firewalls across the perimeter of the network

Firewalls (contd...)

- Firewall inspects traffic through it
- Allows traffic specified in the policy
- Drops everything else
- Two Types
 - Packet Filters, Proxies

Packet Filters

Selectively passes packets from one network interface to another

- Usually done within a router between external and internal network
- What to filter based on?
 - Packet Header Fields
 - IP source and destination addresses
 - Application port numbers
 - ICMP message types/ Protocol options etc.
 - Packet contents (payloads)

Packet Filters: Possible Actions

- Allow the packet to go through
- Drop the packet (Notify Sender/Drop Silently)
- Alter the packet (NAT?)
- Log information about the packet

Some examples

- Block all packets from outside except for SMTP servers
- Block all traffic to/from a list of domains
- Ingress filtering
 - Drop all packets from outside with addresses inside the network
- Egress filtering
 - Drop all packets from inside with addresses outside the network

Firewall implementation

- Stateless packet filtering firewall
- Rule → (Condition, Action)
- Rules are processed in top-down order
 - If a condition satisfied action is taken

Packet Filters

- Advantages
 - Transparent to application/user
 - Simple packet filters can be efficient
- Disadvantages
 - Security
 - Overhead (speed)
 - Usability
 - Very hard to configure the rules
 - Doesn't have enough information to take actions (Does port 22 always mean SSH? Who is the user accessing the SSH?)

Alternatives

- Stateful packet filters
 - Keep the connection states
 - Easier to specify rules
 - Problems?
 - State explosion
 - State for UDP/ICMP?
- Proxy Firewalls
 - Two connections instead of one
 - Either at transport level
 - SOCKS proxy
 - Or at application level
 - HTTP proxy

Intrusion Detection Systems

 Firewalls allow traffic only to legitimate hosts and services

 Traffic to the legitimate hosts/services can have attacks

- Solution?
 - Intrusion Detection Systems
 - Monitor data and behavior
 - Report when identify attacks

Classes of IDS

- What type of analysis?
 - Signature-based
 - Anomaly-based

- Where is it operating?
 - Network-based
 - Host-based

Summary

- Security vulnerabilities are real!
 - Protocol or implementation or bad specs
 - Poor programming practices
 - At all layers in protocol stack
- DoS/DDoS
 - Resource utilization
- Worm
 - Exponential spread
 - Scanning strategies
- Firewall/IDS
 - Counter-measures to protect hosts
 - Fail-open vs. Fail-close?