
Secure Communication with an
Insecure Internet Infrastructure

But first: some spam!

! If you rocked 15-441 (or are doing so), you
might consider:
" 15-610 next semester

" Conviva (Very CMU CSD startup)’s looking for

summer interns

" Dave’s looking for a few students for projects

2

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

15-610: Engineering Complex

Large-scale Computer Systems

M. Satyanarayanan & Jan Harkes

School of Computer Science

Carnegie Mellon University

 http://www.cs.cmu.edu/~15-610

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

Vision of this Course

This is a master's level course to prepare students for technical leadership

roles in creating and evolving the complex, large-scale computer systems

that society will increasingly depend on in the future.

The course will teach the organizing principles of such systems,

identifying a core set of versatile techniques that are applicable across

many system layers.

Students will acquire the knowledge base, intellectual tools, hands-on

skills and modes of thought needed to build well-engineered computer

systems that withstand the test of time, growth in scale, and stresses of

live use.

 Strong design and implementation skills are expected of all students.! The

course assumes a high level of proficiency in all aspects of operating

system design and implementation.!

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

Course Overview
Target audience

• already possess strong hands-on systems skills

• desire careers as creators of major computer systems

• seek mastery of system design and implementation skills

Approach

• small but versatile conceptual toolkit of systems techniques

• immersive hands-on experience in applying this toolkit

• case studies to learn hard-won experience of others

Technical knowledge

Hands-on expertise

Engineering
Wisdom

15-410++

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

Conceptual Toolkit

Caching for performance and availability

Prefetching for performance and availability

Content-Addressable Storage for performance

Damage containment & replication for reliability and availability

Challenges of size and longevity

• Scale reduction for performance and usability

• Reducing fragmentation for performance and manageability

• Hints for performance and scaling

Coping with human foibles for robustness

• limitations of individual users

• limitations of large groups of users

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

Hands-on Projects

Series of 4 projects

Based on a single open-source base (Coda File System)

• embodies many of concepts discussed in class

• almost entirely user-level implementation

• local expertise

Individual projects

Hardware donated by Intel for course

• loaner laptop for each student

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

Conviva Internship

Live Internet media streaming

• Directly from CMU/Berkeley research (Hui Zhang et al.) on overlay

multicast

• (How do you stream media to 100,000 people on the Internet, with

high quality, without a huge fixed infrastructure??)

• Highly-available, scalable back-end services

• Large-scale data analytics and visualization

• Distributed software testing and automation

• If parts of this sound similar to a 441 project, don"t be

surprised. :) Overlay & p2p multicast is becoming important in

the real world.

• Std. qualifications - network programming, C/C++/Java, Python,

etc. university@conviva.com for more info.

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

dga summer projects

- Building systems for improving Web security

• http://www.cs.cmu.edu/~dwendlan/perspectives/

- Prototyping novel Internet architecture features:

• http://www.cs.cmu.edu/~dga/papers/aip-hotnets2007-

abstract.html

- Building large-scale data analysis techniques on mid-sized clusters

preview - © 2006-2008 M. Satyanarayanan Preview of 15-610 for Spring 2009

Back to our schedule...

What is “Internet Security” ?

Worms & Viruses

Denial-of-Service

DNS Poisoning

Phishing

Trojan Horse

Traffic
Eavesdropping

Route Hijacks

Password
Cracking

IP Spoofing

Spam

Spyware

Traffic
modification

End-host
impersonation

Many things to many people!
1) Attacks and vulnerabilities at all layers of the stack
2) Attackers will attack the most vulnerable / profitable components

Internet Design Decisions:
(ie: how did we get here?)

! Origin as a small and cooperative network
 (=> largely trusted infrastructure)

! Global Addressing
(=> every sociopath is your next-door
neighbor*)

! Connection-less datagram service
(=> can’t verify source, hard to protect
 bandwidth)

* Dan Geer

Internet Design Decisions:
(ie: how did we get here?)

! Anyone can connect
" ANYONE can connect...

! Millions of hosts run nearly identical software
" single exploit can create epidemic

! Most Internet users know about as much as
Senator Stevens (aka “the tubes guy”)
" God help us all…

Our “Narrow” Focus

Yes:

 1) Creating a “secure channel” for
communication (today)

 2) Protecting network resources and limiting
connectivity (last time)

No:

 1) Preventing software vulnerabilities &
malware, or “social engineering”.

Secure Communication with an Untrusted
Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Bob

Secure Communication with an Untrusted
Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Bob
Mallory

Secure Communication with an Untrusted
Infrastructure

ISP A

ISP D

ISP C

ISP B

Alice

Hello, I’m
“Bob”

What do we need for a secure
communication channel?

! Authentication (Who am I talking to?)

! Confidentiality (Is my data hidden?)

! Integrity (Has my data been modified?)

! Availability (Can I reach the destination?)

What is cryptography?

"cryptography is about communication in the
presence of adversaries."

 - Ron Rivest

“cryptography is using math and other crazy
tricks to approximate magic”

 - Unknown 441 TA

What is cryptography?

 Tools to help us build secure communication
channels that provide:

 1) Authentication

 2) Integrity

 3) Confidentiality

Cryptography As a Tool

! Using cryptography securely is not simple

! Designing cryptographic schemes correctly is
near impossible.

 Today we want to give you an idea of what
can be done with cryptography.

 Take a security course if you think you may
use it in the future (e.g. 18-487)

The Great Divide

Symmetric Crypto:
(Commonly (mis)-
called Private
key)

Asymmetric Crypto:

(Public key)

Example: RSA

Requires a pre-
shared secret
between
communicating
parties?

Yes

Overall speed of
cryptographic
operations Slow

No

Fast

Symmetric Key: Confidentiality

Motivating Example:

 You and a friend share a key K of L random bits, and
a message M also L bits long.

Scheme:

 You send her the xor(M,K) and then they “decrypt”
using xor(M,K) again.

1) Do you get the right message to your friend?

2) Can an adversary recover the message M?

Symmetric Key: Confidentiality

! One-time Pad (OTP) is secure but usually

impractical

" Key is as long at the message

" Keys cannot be reused (why?)

Stream Ciphers:

Ex: RC4, A5

Block Ciphers:

Ex: DES, AES, Blowfish

In practice, two types of ciphers are used
that require only constant key length:

Symmetric Key: Confidentiality

! Stream Ciphers (ex: RC4)

PRNG
Pseudo-Random stream of L bits

Message of Length L bits

XOR

=

Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted text

to get the message back (just like OTP).

Alice:

Symmetric Key: Confidentiality

Block 4Block 3Block 2Block 1

Round #1 Round #2 Round #n

Block 1

! Block Ciphers (ex: AES)

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it through
decryption engine using KA-B to recover the message.

Block 2 Block 3 Block 4

(fixed block size, e.g.
128 bits)

Symmetric Key: Integrity

! Background: Hash Function Properties
" Consistent

 hash(X) always yields same result

" One-way
 given
X, can’t find Y s.t. hash(Y) = X

" Collision resistant
 given
hash(W) = Z, can’t find X such that hash(X) = Z

Hash FnMessage of arbitrary length
Fixed Size

Hash

Symmetric Key: Integrity

! Hash Message Authentication Code (HMAC)

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure? How do properties
of a hash function help us?

MAC

Step #1:

Alice creates
MAC

Step #2 Step #3

Bob computes MAC with
message and KA-B to verify.

K A-B

Symmetric Key: Authentication

! You already know how to do this!

 (hint: think about how we showed integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B , and she

knows the sender is Bob

Wrong!

K A-B

Symmetric Key: Authentication

 What is Mallory overhears the hash sent by Bob,
and then “replays” it later?

ISP A

ISP D

ISP C

ISP B

Hello, I’m
Bob. Here’s
the hash to
“prove” it

A43FF234

Symmetric Key: Authentication

! A “Nonce”
" A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC result.

Hash
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same
hash with KA-B

and compares
results

Symmetric Key: Authentication

! A “Nonce”
" A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC result.

Nonce

Alice

?!?!

If Alice sends Mallory a nonce, she
cannot compute the corresponding
MAC without K A-B

Mallory

Symmetric Key Crypto Review

! Confidentiality: Stream & Block Ciphers

! Integrity: HMAC

! Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:

1) Number of keys scales as O(n2)

2) How to securely share keys in the first place?

Asymmetric Key Crypto:

! Instead of shared keys, each person has a
“key pair”

Bob’s public key

Bob’s private key

KB

KB
-1

! The keys are inverses, so: KB
-1 (KB (m)) = m

Asymmetric Key Crypto:

! It is believed to be computationally unfeasible
to derive KB

-1 from KB or to find any way to get

M from KB(M) other than using KB
-1 .

=> KB can safely be made public.

 Note: We will not detail the computation that KB(m) entails, but rather

treat these functions as black boxes with the desired properties.

Asymmetric Key: Confidentiality

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message

KB (m)

Bob’s private
key

m = KB
-1 (KB (m))

KB

KB
-1

Asymmetric Key: Sign & Verify

! The message must be from Bob, because it must be

the case that S = KB
-1(M), and only Bob has KB

-1 !

! If we are given a message M, and a value S
such that KB(S) = M, what can we conclude?

! This gives us two primitives:
! Sign (M) = KB

-1(M) = Signature S

! Verify (S, M) = test(KB(S) == M)

Asymmetric Key: Integrity &
Authentication

! We can use Sign() and Verify() in a similar
manner as our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S)

Authentication:
Nonce

S = Sign(Nonce)

Verify(Nonce, S)

Asymmetric Key Review:

! Confidentiality: Encrypt with Public Key of
Receiver

! Integrity: Sign message with private key of
the sender

! Authentication: Entity being authenticated
signs a nonce with private key, signature is
then verified with the public key

But, these operations are computationally expensive*

One last “little detail”…

How do I get these keys in the first place??

Remember:

! Symmetric key primitives assumed Alice and Bob
had already shared a key.

! Asymmetric key primitives assumed Alice knew
Bob’s public key.

 This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

Symmetric Key Distribution

! How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

Key Distribution Center (KDC)

! Alice, Bob need shared symmetric key.

! KDC: server shares different secret key with each

registered user (many users)

! Alice, Bob know own symmetric keys, KA-KDC KB-KDC ,

for communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

Key Distribution Center (KDC)

Alice
knows

R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared
symmetric secret key to communicate with each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

How Useful is a KDC?

! Must always be online to support secure
communication

! KDC can expose our session keys to others!

! Centralized trust and point of failure.

 In practice, the KDC model is mostly used
within single organizations (e.g. Kerberos)
but not more widely.

Certification Authorities

! Certification authority (CA): binds public key to

particular entity, E.

! An entity E registers its public key with CA.
" E provides “proof of identity” to CA.

" CA creates certificate binding E to its public key.

" Certificate contains E’s public key AND the CA’s

signature of E’s public key.

Bob’s
public

key

Bob’s
identifying

information

CA
generates

S = Sign(KB)

CA
private

key

certificate = Bob’s
public key and

signature by CA

KB

K-1 CA

KB

Certification Authorities

! When Alice wants Bob’s public key:

" Gets Bob’s certificate (Bob or elsewhere).
" Use CA’s public key to verify the signature within

Bob’s certificate, then accepts public key

Verify(S, KB)

CA
public

key KCA

KB If signature is
valid, use KB

Certificate Contents
! info algorithm and key value itself (not shown)

! Cert owner

! Cert issuer

! Valid dates

! Fingerprint
of signature

Which Authority Should You Trust?

! Today: many authorities

! What about a shared Public Key
Infrastructure (PKI)?

" A system in which “roots of trust” authoritatively

bind public keys to real-world identities

" So far it has not been very successful

Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

! Used for protocols like HTTPS

! Special TLS socket layer between application and

TCP (small changes to application).

! Handles confidentiality, integrity, and authentication.

! Uses “hybrid” cryptography.

" e.g., encryption: encrypt with symmetric key;

encrypt symmetric key w/public key (smaller!)

What to take home?

! Internet design and growth => security challenges

! Symmetric (pre-shared key, fast) and asymmetric

(key pairs, slow) primitives provide:
! Confidentiality

! Integrity

! Authentication

! “Hybrid Encryption” leverages strengths of both.

! Great complexity exists in securely acquiring keys.

! Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

Resources

! Textbook: 8.1 – 8.3

! Wikipedia for overview of Symmetric/Asymmetric
primitives and Hash functions.

! OpenSSL (www.openssl.org): top-rate open source code
for SSL and primitive functions.

! “Handbook of Applied Cryptography” available free
online: www.cacr.math.uwaterloo.ca/hac/

Setup Channel with TLS “Handshake”

Handshake Steps:

1) Clients and servers negotiate
exact cryptographic protocols

2) Client’s validate public key
certificate with CA public key.

3) Client encrypt secret random
value with server’s key, and send
it as a challenge.

4) Server decrypts, proving it has
the corresponding private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

How TLS Handles Data
1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,
which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

