9 i 15-441 Computer Networking

Lecture 25 — The Web

Outline

* HTTP review and details (more in notes)

» Persistent HTTP review

* HTTP caching

» Content distribution networks

Lecture 19: 2006-11-02

HTTP Basics (Review)

« HTTP layered over bidirectional byte stream

» Almost always TCP

 Interaction

« Client sends request to server, followed by
response from server to client

» Requests/responses are encoded in text
« Stateless

» Server maintains no information about past
client requests

Lecture 19: 2006-11-02

How to Mark End of Message? (Review)

« Size of message > Content-Length
* Must know size of transfer in advance
* Delimiter > MIME-style Content-Type
» Server must “escape” delimiter in content
* Close connection
» Only server can do this

Lecture 19: 2006-11-02

HTTP Request (review)

* Request line

» Method
* GET - return URI
* HEAD - return headers only of GET response
« POST - send data to the server (forms, etc.)
* URL (relative)
 E.g., /findex.html
* HTTP version

Lecture 19: 2006-11-02

HTTP Request (cont.) (review)

* Request headers
* Authorization — authentication info
 Acceptable document types/encodings
* From — user email
* If-Modified-Since
» Referrer — what caused this page to be

requested

» User-Agent — client software

» Blank-line

* Body

Lecture 19: 2006-11-02

HTTP Request (review)

HTTP Request Example (review)

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT
5.0)

Host: www.intel-iris.net
Connection: Keep-Alive

Lecture 19: 2006-11-02 8

nethod H ‘E[version request
line
header
lines
Entity Body
Lecture 19: 2006-11-02 7
HTTP Response (review)
+ Status-line
« HTTP version
« 3 digit response code
« 1XX — informational
« 2XX - success
+ 200 OK
« 3XX - redirection
+ 301 Moved Permanently
+ 303 Moved Temporarily
* 304 Not Modified
« 4XX - client error
* 404 Not Found
« 5XX — server error
+ 505 HTTP Version Not Supported
+ Reason phrase
Lecture 19: 2006-11-02 9

HTTP Response (cont.) (review)

* Headers
 Location — for redirection
« Server — server software
+« WWW-Authenticate — request for authentication
« Allow — list of methods supported (get, head, etc)
Content-Encoding — E.g x-gzip
Content-Length
Content-Type
Expires
Last-Modified
* Blank-line

* Body

Lecture 19: 2006-11-02 10

HTTP Response Example (review)

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"

Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

Lecture 19: 2006-11-02 11

Outline

HTTP intro and details

* Persistent HTTP

* HTTP caching

» Content distribution networks

Lecture 19: 2006-11-02 12

Typical Workload (Web Pages)

» Multiple (typically small) objects per page
* File sizes

* Heavy-tailed
« Pareto distribution for tail

« Lognormal for body of distribution
-- For reference/interest only --

» Embedded references
* Number of embedded objects =
pareto — p(x) = akax-@*1)

Lecture 19: 2006-11-02 13

HTTP 0.9/1.0 (mostly review)

* One request/response per TCP connection
» Simple to implement
» Disadvantages

» Multiple connection setups - three-way
handshake each time
« Several extra round trips added to transfer

* Multiple slow starts

Lecture 19: 2006-11-02 14

Single Transfer Example

Client Server
ORTT \SYN.
Client opens TCP SYN
connection 1RTT <
I DAT
Client sends HTTP request
for HTML BAT Si:?/er reads from

Client parses HTML l FIN

Client opens TCP

connection SYN
SYN
3RTT
Client sends HTTP request DAT
for image Server reads from
/ isk
4RTT
yDAT v

Image begins to arrive

Lecture 19: 2006-11-02 15

More Problems

+ Short transfers are hard on TCP

+ Stuck in slow start

* Loss recovery is poor when windows are small
* Lots of extra connections

* Increases server state/processing
» Server also forced to keep TIME_WAIT

connection state
-- Things to think about --

* Why must server keep these?
+ Tends to be an order of magnitude greater than # of
active connections, why?

Lecture 19: 2006-11-02 16

Persistent Connection Solution (review)

» Multiplex multiple transfers onto one TCP connection

* How to identify requests/responses

Delimiter - Server must examine response for delimiter string
Content-length and delimiter > Must know size of transfer in
advance

Block-based transmission > send in multiple length delimited
blocks

Store-and-forward = wait for entire response and then use
content-length

Solution - use existing methods and close connection otherwise

Lecture 19: 2006-11-02 17

Persistent Connection Example (review)

Client Server
ORTT DAT
Client sends HTTP request lSen/er reads from
for HTML ar | disk
1RTT L‘<'
Client parses HTML DAT

Client sends HTTP request LdS_e rver reads from
DAT | disk

for image
2RTT /

Image begins to arrive

Lecture 19: 2006-11-02 18

Persistent HTTP (review)

Nonpersistent HTTP issues: Persistent without pipelining:
* Requires 2 RTTs per object « Client issues new request
+ OS must work and allocate only when previous
host resources for each TCP response has been received
connection « One RTT for each
- But browsers often open referenced object
parallel TCP connections to Persistent with pipelining:
fetch referenced objects . Defaultin HTTP/1.1
Persistent HTTP - Client sends requests as
« Server leaves connection soon as it encounters a
open after sending response referenced object
« Subsequent HTTP messages « As little as one RTT for all
between same client/server the referenced objects

are sent over connection

Lecture 19: 2006-11-02 19

Outline

* HTTP intro and details
» Persistent HTTP

-- new stuff --
* HTTP caching

» Content distribution networks

Lecture 19: 2006-11-02 20

HTTP Caching

 Clients often cache documents
+ Challenge: update of documents

+ If-Modified-Since requests to check
« HTTP 0.9/1.0 used just date

« HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well
» When/how often should the original be checked
for changes?
« Check every time?
« Check each session? Day? Etc?

» Use Expires header
« If no Expires, often use Last-Modified as estimate

Lecture 19: 2006-11-02 21

Example Cache Check Request

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)

Host: www.intel-iris.net
Connection: Keep-Alive

Lecture 19: 2006-11-02 22

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a”

Lecture 19: 2006-11-02 23

Ways to cache

Client-directed caching: Web Proxies

Server-directed caching: Content Delivery Networks
(CDNs)

Lecture 19: 2006-11-02 24

Web Proxy Caches

« User configures browser:
Web accesses via cache
« Browser sends all HTTP
requests to cache
« Object in cache: cache
returns object
« Else cache requests object
from origin server, then
returns object to client

origin
server

origin
server

Lecture 19: 2006-11-02 25

Caching Example (1)

Assumptions

« Average object size = 100,000
bits

« Avg. request rate from
institution’s browser to origin
servers = 15/sec

« Delay from institutional router to|
any origin server and back to
router =2 sec

Consequences

« Utilization on LAN = 15%

« Utilization on access link = 100%

« Total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

a .
origin
T @ servers
@‘ public
Internet -@

1.5 Mbps
access link
institutional
petiions 10 Mbps LAN

Lecture 19: 2006-11-02 26

Caching Example (2)

Possible solution

* Increase bandwidth of access
link to, say, 10 Mbps

« Often a costly upgrade

Consequences
« Utilization on LAN = 15%
« Utilization on access link = 15%
« Total delay = Internet delay +
access delay + LAN delay
= 2 sec + msecs + msecs

a .
origin
T @ servers
@‘ public
Internet _@

institutional

petiions 10 Mbps LAN

Lecture 19: 2006-11-02 27

Caching Example (3)

Install cache

« Suppose hit rate is .4

Consequence

* 40% requests will be satisfied almost
immediately (say 10 msec)

« 60% requests satisfied by origin
server

« Utilization of access link reduced to
60%, resulting in negligible delays

+ Weighted average of delays

= .6*2 sec + .4*10msecs < 1.3 secs

a .
origin
T @ servers
@‘ public
Internet -@

1.5 Mbps
access link
institutional
network

10 Mbps LAN

institutional
cache

Lecture 19: 2006-11-02 28

Problems

» Over 50% of all HTTP objects are uncacheable — why?

* Not easily solvable

« Dynamic data -> stock prices, scores, web cams
« CGl scripts - results based on passed parameters

» Obvious fixes

« SSL - encrypted data is not cacheable
« Most web clients don’t handle mixed pages well >many generic
L

objects transferred with SS

« Cookies - results may be based on passed data
« Hit metering > owner wants to measure # of hits for revenue, etc.

* What will be the end result?

Lecture 19: 2006-11-02 29

Content Distribution Networks (CDNs)

« The content providers are the
CDN customers.

Content replication

« CDN company installs hundreds
of CDN servers throughout
Internet

« Close to users

+ CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

origin server
in North America

h—

CDN distribution node

)
@/l\@

CDN server
N - CDN server
in S. America CDN server . "
; in Asia
in Europe
Lecture 19: 2006-11-02 30

Outline

e HTTP intro and details

* Persistent HTTP

* HTTP caching

» Content distribution networks

Lecture 19: 2006-11-02 31

Content Distribution Networks &
Server Selection

» Replicate content on many servers
» Challenges
* How to replicate content
* Where to replicate content
* How to find replicated content
» How to choose among know replicas
» How to direct clients towards replica

Lecture 19: 2006-11-02 32

Server Selection

* Which server?
* Lowest load - to balance load on servers
» Best performance - to improve client performance
« Based on Geography? RTT? Throughput? Load?
+ Any alive node -> to provide fault tolerance
» How to direct clients to a particular server?
+ As part of routing - anycast, cluster load balancing
« Not covered ®
* As part of application > HTTP redirect
* As part of naming > DNS

Lecture 19: 2006-11-02 33

Application Based

« HTTP supports simple way to indicate that Web page has
moved (30X responses)

+ Server receives Get request from client
« Decides which server is best suited for particular client and object
« Returns HTTP redirect to that server

» Can make informed application specific decision

* May introduce additional overhead > multiple connection
setup, name lookups, etc.

+ OK solution in general, but...
« HTTP Redirect has some flaws — especially with current browsers
« Incurs many delays, which operators may really care about

Lecture 19: 2006-11-02 34

Naming Based

» Client does DNS name lookup for service

» Name server chooses appropriate server address
» A-record returned is “best” one for the client

* What information can name server base decision
on?
 Server load/location - must be collected

* Information in the name lookup request
« Name service client = typically the local name server for client

Lecture 19: 2006-11-02 35

How Akamai Works

 Clients fetch html document from primary server
+ E.g. fetch index.html from cnn.com
» URLSs for replicated content are replaced in html

« E.g. replaced with

» Client is forced to resolve aXYZ.g.akamaitech.net
hostname

Lecture 19: 2006-11-02 36

How Akamai Works

* How is content replicated?
» Akamai only replicates static content (*)
* Modified name contains original file name
» Akamai server is asked for content
« First checks local cache

« If not in cache, requests file from primary server and
caches file

* (At least, the version we're talking about today. Akamai actually lets
sites write code that can run on Akamai’s servers, but that's a pretty
different beast)

Lecture 19: 2006-11-02 37

How Akamai Works

* Root server gives NS record for akamai.net
» Akamai.net name server returns NS record for
g.akamaitech.net

« Name server chosen to be in region of client's name
server

* TTL is large
» G.akamaitech.net nameserver chooses server in
region
+ Should try to chose server that has file in cache - How
to choose?
* Uses aXYZ name and hash
« TTL is small > why?

Lecture 19: 2006-11-02 38

Simple Hashing

* Given document XYZ, we need to choose a server
to use

» Suppose we use modulo

* Number servers from 1...n
+ Place document XYZ on server (XYZ mod n)

* What happens when a servers fails? n > n-1
« Same if different people have different measures of n
* Why might this be bad?

Lecture 19: 2006-11-02 39

Consistent Hash

* “view” = subset of all hash buckets that are visible
* Desired features

» Balanced - in any one view, load is equal across
buckets

» Smoothness — little impact on hash bucket contents
when buckets are added/removed

+ Spread — small set of hash buckets that may hold an
object regardless of views

+ Load — across all views # of objects assigned to hash
bucket is small

Lecture 19: 2006-11-02 40

Consistent Hash — Example

» Construction

« Assign each of C hash buckets to 14
random points on mod 2" circle,
where, hash key size = n.

» Map object to random position on
circle

+ Hash of object = closest

12 4

clockwise bucket

* Smoothness - addition of bucket does not cause
movement between existing buckets

+ Spread & Load > small set of buckets that lie near object

« Balance - no bucket is responsible for large number of
objects

Lecture 19: 2006-11-02 41

How Akamai Works

cnn.com (content provider) DNS root server Akamai server

Akamai low-level DNS

E Akamai high-level
! DNS server
EL 1 server

Nearby matching
Akamai server

o= > B
End-user 10 .

Lecture 19: 2006-11-02 42

Akamai — Subsequent Requests

cnn.com (content provider) DNS root server Akamai server

=

t

@1 Akamai high-level
/! DNS server

7 | Akamai low-level DNS
sk} server

8 Nearby matching
Akamai server

= °

End-user Get 10
/cnn.com/foo.jpg

Lecture 19: 2006-11-02 43

Impact on DNS Usage

» DNS is used for server selection more and more
* What are reasonable DNS TTLs for this type of use
» Typically want to adapt to load changes
* Low TTL for A-records - what about NS records?

» How does this affect caching?

* What do the first and subsequent lookup do?

Lecture 19: 2006-11-02 44

HTTP (Summary)

+ Simple text-based file exchange protocol

« Support for status/error responses, authentication, client-side state
maintenance, cache maintenance

* Workloads
« Typical documents structure, popularity
« Server workload
* Interactions with TCP
« Connection setup, reliability, state maintenance
« Persistent connections
* How to improve performance
« Persistent connections
« Caching
* Replication

Lecture 19: 2006-11-02 45

N EXTRA SLIDES

The rest of the slides are FYI

Typical Workload (Server)

* Popularity
« Zipf distribution (P = kr') > surprisingly common
« Obvious optimization - caching
* Request sizes
+ In one measurement paper > median 1946 bytes, mean 13767
bytes
« Why such a difference? Heavy-tailed distribution
« Pareto — p(x) = akax-(@*1)
» Temporal locality
+ Modeled as distance into push-down stack
« Lognormal distribution of stack distances
* Request interarrival
« Bursty request patterns

Lecture 19: 2006-11-02 47

Caching Proxies — Sources for Misses

« Capacity
« How large a cache is necessary or equivalent to infinite
+ Ondisk vs. in memory - typically on disk
« Compulsory
« First time access to document
« Non-cacheable documents
« CGl-scripts
« Personalized documents (cookies, etc)
« Encrypted data (SSL)
+ Consistency
« Document has been updated/expired before reuse
+ Conflict
« No such misses

Lecture 19: 2006-11-02 48

