
1

15-441 Computer Networking

Lecture 25 – The Web

Lecture 19: 2006-11-02 2

Outline

• HTTP review and details (more in notes)

• Persistent HTTP review

• HTTP caching

• Content distribution networks

Lecture 19: 2006-11-02 3

HTTP Basics (Review)

• HTTP layered over bidirectional byte stream
• Almost always TCP

• Interaction
• Client sends request to server, followed by

response from server to client
• Requests/responses are encoded in text

• Stateless
• Server maintains no information about past

client requests

Lecture 19: 2006-11-02 4

How to Mark End of Message? (Review)

• Size of message  Content-Length
• Must know size of transfer in advance

• Delimiter  MIME-style Content-Type
• Server must “escape” delimiter in content

• Close connection
• Only server can do this

Lecture 19: 2006-11-02 5

HTTP Request (review)

• Request line
• Method

• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

• URL (relative)
• E.g., /index.html

• HTTP version

Lecture 19: 2006-11-02 6

HTTP Request (cont.) (review)

• Request headers
• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be

requested
• User-Agent – client software

• Blank-line
• Body



2

Lecture 19: 2006-11-02 7

HTTP Request (review)

Lecture 19: 2006-11-02 8

HTTP Request Example (review)

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT

5.0)
Host: www.intel-iris.net
Connection: Keep-Alive

Lecture 19: 2006-11-02 9

HTTP Response (review)

• Status-line
• HTTP version
• 3 digit response code

• 1XX – informational
• 2XX – success

• 200 OK
• 3XX – redirection

• 301 Moved Permanently
• 303 Moved Temporarily
• 304 Not Modified

• 4XX – client error
• 404 Not Found

• 5XX – server error
• 505 HTTP Version Not Supported

• Reason phrase

Lecture 19: 2006-11-02 10

HTTP Response (cont.) (review)

• Headers
• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires
• Last-Modified

• Blank-line
• Body

Lecture 19: 2006-11-02 11

HTTP Response Example (review)

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix)  (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..

Lecture 19: 2006-11-02 12

Outline

• HTTP intro and details

• Persistent HTTP

• HTTP caching

• Content distribution networks



3

Lecture 19: 2006-11-02 13

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes

• Heavy-tailed
• Pareto distribution for tail
• Lognormal for body of distribution

-- For reference/interest only  --

• Embedded references
• Number of embedded objects =

pareto – p(x) = akax-(a+1)

Lecture 19: 2006-11-02 14

HTTP 0.9/1.0 (mostly review)

• One request/response per TCP connection
• Simple to implement

• Disadvantages
• Multiple connection setups  three-way

handshake each time
• Several extra round trips added to transfer

• Multiple slow starts

Lecture 19: 2006-11-02 15

Single Transfer Example

Client Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from
disk

FIN

Server reads from
disk

Client opens TCP
connection
Client sends HTTP request
for HTML

Client parses HTML
Client opens TCP
connection

Client sends HTTP request
for image

Image begins to arrive

Lecture 19: 2006-11-02 16

More Problems

• Short transfers are hard on TCP
• Stuck in slow start
• Loss recovery is poor when windows are small

• Lots of extra connections
• Increases server state/processing

• Server also forced to keep TIME_WAIT
connection state

-- Things to think about  --

• Why must server keep these?
• Tends to be an order of magnitude greater than # of

active connections, why?

Lecture 19: 2006-11-02 17

Persistent Connection Solution (review)

• Multiplex multiple transfers onto one TCP connection

• How to identify requests/responses
• Delimiter  Server must examine response for delimiter string
• Content-length and delimiter  Must know size of transfer in

advance
• Block-based transmission  send in multiple length delimited

blocks
• Store-and-forward  wait for entire response and then use

content-length
• Solution  use existing methods and close connection otherwise

Lecture 19: 2006-11-02 18

Persistent Connection Example (review)

Client Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from
disk

Client sends HTTP request
for HTML

Client parses HTML
Client sends HTTP request
for image

Image begins to arrive

DAT
Server reads from
disk

DAT



4

Lecture 19: 2006-11-02 19

Persistent HTTP (review)

Nonpersistent HTTP issues:
• Requires 2 RTTs per object
• OS must work and allocate

host resources for each TCP
connection

• But browsers often open
parallel TCP connections to
fetch referenced objects

Persistent  HTTP
• Server leaves connection

open after sending response
• Subsequent HTTP messages

between same client/server
are sent over connection

Persistent without pipelining:
• Client issues new request

only when previous
response has been received

• One RTT for each
referenced object

Persistent with pipelining:
• Default in HTTP/1.1
• Client sends requests as

soon as it encounters a
referenced object

• As little as one RTT for all
the referenced objects

Lecture 19: 2006-11-02 20

Outline

• HTTP intro and details

• Persistent HTTP

-- new stuff --

• HTTP caching

• Content distribution networks

Lecture 19: 2006-11-02 21

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well

• When/how often should the original be checked
for changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

Lecture 19: 2006-11-02 22

Example Cache Check Request

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;

Windows NT 5.0)
Host: www.intel-iris.net
Connection: Keep-Alive

Lecture 19: 2006-11-02 23

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix)  (Red-Hat/Linux)

mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a”

Lecture 19: 2006-11-02 24

Ways to cache

Client-directed caching: Web Proxies
Server-directed caching:  Content Delivery Networks

(CDNs)



5

Lecture 19: 2006-11-02 25

Web Proxy Caches

• User configures browser:
Web accesses via  cache

• Browser sends all HTTP
requests to cache
• Object in cache: cache

returns object
• Else cache requests object

from origin server, then
returns object to client

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin 
server

origin 
server

Lecture 19: 2006-11-02 26

Caching Example (1)

Assumptions
• Average object size = 100,000

bits
• Avg. request rate from

institution’s browser to origin
servers = 15/sec

• Delay from institutional router to
any origin server and back to
router  = 2 sec

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 100%
• Total delay   = Internet delay +

access delay + LAN delay
  =  2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps 
access link

Lecture 19: 2006-11-02 27

Caching Example (2)

Possible solution
• Increase bandwidth of access

link to, say, 10 Mbps
• Often a costly upgrade

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 15%
• Total delay   = Internet delay +

access delay + LAN delay
  =  2 sec + msecs + msecs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps 
access link

Lecture 19: 2006-11-02 28

Caching Example (3)

Install cache
• Suppose hit rate is .4
Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)
• 60% requests satisfied by origin

server
• Utilization of access link reduced to

60%, resulting in negligible delays
• Weighted average of delays
  =  .6*2 sec + .4*10msecs < 1.3 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps 
access link

institutional
cache

Lecture 19: 2006-11-02 29

Problems

• Over 50% of all HTTP objects are uncacheable – why?
• Not easily solvable

• Dynamic data  stock prices, scores, web cams
• CGI scripts  results based on passed parameters

• Obvious fixes
• SSL  encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSL

• Cookies  results may be based on passed data
• Hit metering  owner wants to measure # of hits for revenue, etc.

• What will be the end result?

Lecture 19: 2006-11-02 30

Content Distribution Networks (CDNs)

• The content providers are the
CDN customers.

Content replication
• CDN company installs hundreds

of CDN servers throughout
Internet
• Close to users

• CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

origin server 
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia



6

Lecture 19: 2006-11-02 31

Outline

• HTTP intro and details

• Persistent HTTP

• HTTP caching

• Content distribution networks

Lecture 19: 2006-11-02 32

Content Distribution Networks &
Server Selection

• Replicate content on many servers
• Challenges

• How to replicate content
• Where to replicate content
• How to find replicated content
• How to choose among know replicas
• How to direct clients towards replica

Lecture 19: 2006-11-02 33

Server Selection

• Which server?
• Lowest load  to balance load on servers
• Best performance  to improve client performance

• Based on Geography? RTT? Throughput? Load?
• Any alive node  to provide fault tolerance

• How to direct clients to a particular server?
• As part of routing  anycast, cluster load balancing

• Not covered 
• As part of application  HTTP redirect
• As part of naming  DNS

Lecture 19: 2006-11-02 34

Application Based

• HTTP supports simple way to indicate that Web page has
moved (30X responses)

• Server receives Get request from client
• Decides which server is best suited for particular client and object
• Returns HTTP redirect to that server

• Can make informed application specific decision
• May introduce additional overhead  multiple connection

setup, name lookups, etc.
• OK solution in general, but…

• HTTP Redirect has some flaws – especially with current browsers
• Incurs many delays, which operators may really care about

Lecture 19: 2006-11-02 35

Naming Based

• Client does DNS name lookup for service
• Name server chooses appropriate server address

• A-record returned is “best” one for the client
• What information can name server base decision

on?
• Server load/location  must be collected
• Information in the name lookup request

• Name service client  typically the local name server for client

Lecture 19: 2006-11-02 36

How Akamai Works

• Clients fetch html document from primary server
• E.g. fetch index.html from cnn.com

• URLs for replicated content are replaced in html
• E.g. <img src=“http://cnn.com/af/x.gif”> replaced with

<img src=“http://a73.g.akamaitech.net/7/23/cnn.com/af/x.gif”>

• Client is forced to resolve aXYZ.g.akamaitech.net
hostname



7

Lecture 19: 2006-11-02 37

How Akamai Works

• How is content replicated?
• Akamai only replicates static content (*)
• Modified name contains original file name
• Akamai server is asked for content

• First checks local cache
• If not in cache, requests file from primary server and

caches file

* (At least, the version we’re talking about today.  Akamai actually lets
sites write code that can run on Akamai’s servers, but that’s a pretty
different beast)

Lecture 19: 2006-11-02 38

How Akamai Works

• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Name server chosen to be in region of client’s name

server
• TTL is large

• G.akamaitech.net nameserver chooses server in
region
• Should try to chose server that has file in cache - How

to choose?
• Uses aXYZ name and hash
• TTL is small  why?

Lecture 19: 2006-11-02 39

Simple Hashing

• Given document XYZ, we need to choose a server
to use

• Suppose we use modulo
• Number servers from 1…n

• Place document XYZ on server (XYZ mod n)
• What happens when a servers fails? n  n-1

• Same if different people have different measures of n
• Why might this be bad?

Lecture 19: 2006-11-02 40

Consistent Hash

• “view” = subset of all hash buckets that are visible
• Desired features

• Balanced – in any one view, load is equal across
buckets

• Smoothness – little impact on hash bucket contents
when buckets are added/removed

• Spread – small set of hash buckets that may hold an
object regardless of views

• Load – across all views # of objects assigned to hash
bucket is small

Lecture 19: 2006-11-02 41

Consistent Hash – Example

• Smoothness  addition of bucket does not cause
movement between existing buckets

• Spread & Load  small set of buckets that lie near object
• Balance  no bucket is responsible for large number of

objects

• Construction
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
circle

• Hash of object = closest
clockwise bucket

0

4

8

12
Bucket

14

Lecture 19: 2006-11-02 42

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

11

6
7

8

9

10

Get
index.
html

Get /cnn.com/foo.jpg

12

Get foo.jpg

5



8

Lecture 19: 2006-11-02 43

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level
DNS server

Akamai low-level DNS
server

7

8

9

10

Get
index.
html

Get
/cnn.com/foo.jpg

Nearby matching
Akamai server

Lecture 19: 2006-11-02 44

Impact on DNS Usage

• DNS is used for server selection more and more
• What are reasonable DNS TTLs for this type of use
• Typically want to adapt to load changes
• Low TTL for A-records  what about NS records?

• How does this affect caching?
• What do the first and subsequent lookup do?

Lecture 19: 2006-11-02 45

HTTP (Summary)

• Simple text-based file exchange protocol
• Support for status/error responses, authentication, client-side state

maintenance, cache maintenance
• Workloads

• Typical documents structure, popularity
• Server workload

• Interactions with TCP
• Connection setup, reliability, state maintenance
• Persistent connections

• How to improve performance
• Persistent connections
• Caching
• Replication

EXTRA SLIDES

The rest of the slides are FYI

Lecture 19: 2006-11-02 47

Typical Workload (Server)

• Popularity
• Zipf distribution (P = kr-1)  surprisingly common
• Obvious optimization  caching

• Request sizes
• In one measurement paper  median 1946 bytes, mean 13767

bytes
• Why such a difference? Heavy-tailed distribution

• Pareto – p(x) = akax-(a+1)

• Temporal locality
• Modeled as distance into push-down stack
• Lognormal distribution of stack distances

• Request interarrival
• Bursty request patterns

Lecture 19: 2006-11-02 48

Caching Proxies – Sources for Misses

• Capacity
• How large a cache is necessary or equivalent to infinite
• On disk vs. in memory  typically on disk

• Compulsory
• First time access to document
• Non-cacheable documents

• CGI-scripts
• Personalized documents (cookies, etc)
• Encrypted data (SSL)

• Consistency
• Document has been updated/expired before reuse

• Conflict
• No such misses


