Lecture 8
Virtual Circuits, ATM, MPLS

David Andersen
School of Computer Science
Carnegie Mellon University

15-441 Networking, Fall 2006
http://www.cs.cmu.edu/~srini/15-441/F06/

Outline

- Exam discussion
- Layering review (bridges, routers, etc.)
 » Exam section C.
- Circuit switching refresher
- Virtual Circuits - general
 » Why virtual circuits?
 » How virtual circuits? -- tag switching!
- Two modern implementations
 » ATM - teleco-style virtual circuits
 » MPLS - IP-style virtual circuits
Exam stats

Max/avg/min: 90 / 63 / 20

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>19.6</td>
<td>17.9</td>
<td>12.8</td>
<td>11.0</td>
</tr>
<tr>
<td>Avg</td>
<td>57.6%</td>
<td>74.8%</td>
<td>58.3%</td>
<td>68.6%</td>
</tr>
</tbody>
</table>

Common Exam Problems

- **Routing**: No one big problem; many small misunderstandings. Please check your scores.
- **Short answer**: Many incorrect round-trip times vs. one-way times.
- **DNS**
 - Always sends the full query! (e.g., “ra1.streaming.npr.org”, not just “npr.org”)
 - Clients don’t recurse; the local recursive DNS server does. Could run on clients, but usually doesn’t.
- **Routing and bridging and addressing...**
Packet Switching

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Routers and switches use the address in the packet to determine how to forward the packets
- Destination recreates the message.
- Analogy: a letter in surface mail.

Circuit Switching

- Source first establishes a connection (circuit) to the destination.
 - Each router or switch along the way may reserve some bandwidth for the data flow
- Source sends the data over the circuit.
 - No need to include the destination address with the data since the routers know the path
- The connection is torn down.
- Example: telephone network.
Circuit Switching Discussion

- Traditional circuits: on each hop, the circuit has a dedicated wire or slice of bandwidth.
 - Physical connection - clearly no need to include addresses with the data

- Advantages, relative to packet switching:
 - Implies guaranteed bandwidth, predictable performance
 - Simple switch design: only remembers connection information, no longest-prefix destination address look up

- Disadvantages:
 - Inefficient for bursty traffic (wastes bandwidth)
 - Delay associated with establishing a circuit

- Can we get the advantages without (all) the disadvantages?

Virtual Circuits

- Each wire carries many “virtual” circuits.
 - Forwarding based on virtual circuit (VC) identifier
 - IP header: src, dst, etc.
 - Virtual circuit header: just “VC”
 - A path through the network is determined for each VC when the VC is established
 - Use statistical multiplexing for efficiency

- Can support wide range of quality of service.
 - No guarantees: best effort service
 - Weak guarantees: delay < 300 msec, ...
 - Strong guarantees: e.g. equivalent of physical circuit
Packet Switching and Virtual Circuits: Similarities

- “Store and forward” communication based on an address.
 - Address is either the destination address or a VC identifier
- Must have buffer space to temporarily store packets.
 - E.g. multiple packets for some destination arrive simultaneously
- Multiplexing on a link is similar to time sharing.
 - No reservations: multiplexing is statistical, i.e. packets are interleaved without a fixed pattern
 - Reservations: some flows are guaranteed to get a certain number of “slots”

Virtual Circuits Versus Packet Switching

- Circuit switching:
 - Uses short connection identifiers to forward packets
 - Switches know about the connections so they can more easily implement features such as quality of service
 - Virtual circuits form basis for traffic engineering: VC identifies long-lived stream of data that can be scheduled
- Packet switching:
 - Use full destination addresses for forwarding packets
 - Can send data right away: no need to establish a connection first
 - Switches are stateless: easier to recover from failures
 - Adding QoS is hard
 - Traffic engineering is hard: too many packets!
Circuit Switching

Switch

Connects (electrons or bits) ports to ports

Packet switched vs. VC

R1 packet forwarding table:

<table>
<thead>
<tr>
<th>Payload</th>
<th>VCI</th>
<th>Payload</th>
<th>Dst</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1</td>
<td>R2</td>
<td>3</td>
</tr>
<tr>
<td>R4</td>
<td>2</td>
<td>R4</td>
<td>4</td>
</tr>
</tbody>
</table>

Different paths to same destination!

(Useful for traffic engineering!)

R1 VC table:

VC 1 R2
VC 2 R3
Virtual Circuit

R1 VC table:
VC 5 R2

R2 VC table:
VC 5 R4

Challenges:
- How to set up path?
- How to assign IDs?

Connections and Signaling

- Permanent vs. switched virtual connections (PVCs, SVCs)
 - static vs. dynamic. PVCs last “a long time”
 - E.g., connect two bank locations with a PVC that looks like a circuit
 - SVCs are more like a phone call
 - PVCs administratively configured (but not “manually”)
 - SVCs dynamically set up on a “per-call” basis
- Topology
 - point to point
 - point to multipoint
 - multipoint to multipoint
- Challenges:
 - How to configure these things?
 - What VCI to use?
 - Setting up the path
Virtual Circuit Switching: Label (“tag”) Swapping

Global VC ID allocation — ICK! Solution: Per-link uniqueness.

Change VCI each hop.

<table>
<thead>
<tr>
<th>Input Port</th>
<th>Input VCI</th>
<th>Output Port</th>
<th>Output VCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1:</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>R2:</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>R4:</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Label (“tag”) Swapping

Result: Signalling protocol must only find per-link unused VCIs.

- “Link-local scope”
- Connection setup can proceed hop-by-hop.
 - Good news for our setup protocols!
PVC connection setup

- Manual?
 - Configure each switch by hand. Ugh.
- Dedicated signalling protocol
 - E.g., what ATM uses
- Piggyback on routing protocols
 - Used in MPLS. E.g., use BGP to set up

SVC Connection Setup

![SVC Connection Diagram]

17

18
Virtual Circuits In Practice

- ATM: Teleco approach
 - Kitchen sink. Based on voice, support file transfer, video, etc., etc.
 - Intended as IP replacement. That didn’t happen. :)
 - Today: Underlying network protocol in many teleco networks. E.g., DSL speaks ATM. IP over ATM in some cases.
- MPLS: The “IP Heads” answer to ATM
 - Stole good ideas from ATM
 - Integrates well with IP
 - Today: Used inside some networks to provide VPN support, traffic engineering, simplify core.
- Other nets just run IP.
- Older tech: Frame Relay
 - Only provided PVCs. Used for quasi-dedicated 56k/T1 links between offices, etc. Slower, less flexible than ATM.

Asynchronous Transfer Mode: ATM

- Connection-oriented, packet-switched
 - (e.g., virtual circuits).
- Teleco-driven. Goals:
 - Handle voice, data, multimedia
 - Support both PVCs and SVCs
 - Replace IP. (didn’t happen…)
- Important feature: Cell switching
Cell Switching

- Small, fixed-size cells
 [Fixed-length data][header]

- Why?
 » Efficiency: All packets the same
 - Easier hardware parallelism, implementation
 » Switching efficiency:
 - Lookups are easy -- table index.
 » Result: Very high cell switching rates.
 » Initial ATM was 155Mbit/s. Ethernet was 10Mbit/s at the same time. (!)

- How do you pick the cell size?

ATM Features

- Fixed size cells (53 bytes).
 » Why 53?
- Virtual circuit technology using hierarchical virtual circuits (VP,VC).
- PHY (physical layer) processing delineates cells by frame structure, cell header error check.
- Support for multiple traffic classes by adaptation layer.
 » E.g. voice channels, data traffic
- Elaborate signaling stack.
 » Backwards compatible with respect to the telephone standards
- Standards defined by ATM Forum.
 » Organization of manufacturers, providers, users
Why 53 Bytes?

- Small cells favored by voice applications
 - Delays of more than about 10 ms require echo cancellation
 - Each payload byte consumes 125 µs (8000 samples/sec)
- Large cells favored by data applications
 - Five bytes of each cell are overhead
- France favored 32 bytes
 - 32 bytes = 4 ms packetization delay.
 - France is 3 ms wide.
 - Wouldn’t need echo cancellers!
- USA, Australia favored 64 bytes
 - 64 bytes = 8 ms
 - USA is 16 ms wide
 - Needed echo cancellers anyway, wanted less overhead
- Compromise

ATM Adaptation Layers

- AAL 1: audio, uncompressed video
- AAL 2: compressed video
- AAL 3: long term connections
- AAL 4/5: data traffic
 - AAL5 is most relevant to us…
AAL5 Adaptation Layer

Pertinent part: Packets are spread across multiple ATM cells. Each packet is delimited by EOF flag in cell.

ATM Packet Shredder Effect

- Cell loss results in packet loss.
 - Cell from middle of packet: lost packet
 - EOF cell: lost two packets
 - Just like consequence of IP fragmentation, but VERY small fragments!

- Even low cell loss rate can result in high packet loss rate.
 - E.g. 0.2% cell loss -> 2% packet loss
 - Disaster for TCP

- Solution: drop remainder of the packet, i.e. until EOF cell.
 - Helps a lot: dropping useless cells reduces bandwidth and lowers the chance of later cell drops
 - Slight violation of layers
 - Discovered after early deployment experience with IP over ATM.
IP over ATM

- When sending IP packets over an ATM network, set up a VC to destination.
 - ATM network can be end to end, or just a partial path
 - ATM is just another link layer
- Virtual connections can be cached.
 - After a packet has been sent, the VC is maintained so that later packets can be forwarded immediately
 - VCs eventually times out
- Properties.
 - Overhead of setting up VCs (delay for first packet)
 - Complexity of managing a pool of VCs
 - Flexible bandwidth management
 - Can use ATM QoS support for individual connections (with appropriate signaling support)

IP over ATM
Static VCs

- Establish a set of “ATM pipes” that defines connectivity between routers.
- Routers simply forward packets through the pipes.
 - Each statically configured VC looks like a link
- Properties.
 - Some ATM benefits are lost (per flow QoS)
 - Flexible but static bandwidth management
 - No set up overheads
ATM Discussion

- At one point, ATM was viewed as a replacement for IP.
 - Could carry both traditional telephone traffic (CBR circuits) and other traffic (data, VBR)
 - Better than IP, since it supports QoS
- Complex technology.
 - Switching core is fairly simple, but
 - Support for different traffic classes
 - Signaling software is very complex
 - Technology did not match people’s experience with IP
 - deploying ATM in LAN is complex (e.g. broadcast)
 - supporting connection-less service model on connection-based technology
 - With IP over ATM, a lot of functionality is replicated
- Currently used as a datalink layer supporting IP.

Multi Protocol Label Switching - MPLS

- Selective combination of VCs + IP
 - Today: MPLS useful for traffic engineering, reducing core complexity, and VPNs
- Core idea: Layer 2 carries VC label
 - Could be ATM (which has its own tag)
 - Could be a “shim” on top of Ethernet/etc.:
 - Existing routers could act as MPLS switches just by examining that shim – no radical re-design. Gets flexibility benefits, though not cell switching advantages
MPLS + IP

- Map packet onto Forward Equivalence Class (FEC)
 - Simple case: longest prefix match of destination address
 - More complex if QoS of policy routing is used
- In MPLS, a label is associated with the packet when it enters the network and forwarding is based on the label in the network core.
 - Label is swapped (as ATM VClhs)
- Potential advantages.
 - Packet forwarding can be faster
 - Routing can be based on ingress router and port
 - Can use more complex routing decisions
 - Can force packets to followed a pinned route

MPLS core, IP interface

MPLS tag assigned

MPLS tag stripped

MPLS forwarding in core
MPLS use case #1: VPNs

MPLS tags can differentiate green VPN from orange VPN.

MPLS use case #2: Reduced State Core

A-> C pkt
Internal routers must know all C destinations

R1 uses MPLS tunnel to R4.
R1 and R4 know routes, but R2 and R3 don’t.
MPLS use case #3: Traffic Engineering

- As discussed earlier -- can pick routes based upon more than just destination
- Used in practice by many ISPs, though certainly not all.

MPLS Mechanisms

- MPLS packet forwarding: implementation of the label is technology specific.
 - Could be ATM VCI or a short extra “MPLS” header

- Supports stacked labels.
 - Operations can be “swap” (normal label swapping), “push” and “pop” labels.
 - VERY flexible! Like creating tunnels, but much simpler -- only adds a small label.

<table>
<thead>
<tr>
<th>Label</th>
<th>CoS</th>
<th>S</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
MPLS Discussion

- **Original motivation.**
 - Fast packet forwarding:
 - Use of ATM hardware
 - Avoid complex “longest prefix” route lookup
 - Limitations of routing table sizes
 - Quality of service

- **Currently mostly used for traffic engineering and network management.**
 - LSPs can be thought of as “programmable links” that can be set up under software control
 - on top of a simple, static hardware infrastructure

Take Home Points

- **Costs/benefits/goals of virtual circuits**
- **Cell switching (ATM)**
 - Fixed-size pkts: Fast hardware
 - Packet size picked for low voice jitter. Understand trade-offs.
 - Beware packet shredder effect (drop entire pkt)
- **Tag/label swapping**
 - Basis for most VCs.
 - Makes label assignment link-local. Understand mechanism.

- **MPLS - IP meets virtual circuits**
 - MPLS tunnels used for VPNs, traffic engineering, reduced core routing table sizes
ATM Traffic Classes

- **Constant Bit Rate (CBR) and Variable Bit Rate (VBR).**
 - Guaranteed traffic classes for different traffic types.

- **Unspecified Bit Rate (UBR).**
 - Pure best effort with no help from the network.

- **Available Bit Rate (ABR).**
 - Best effort, but network provides support for congestion control and fairness.
 - Congestion control is based on explicit congestion notification:
 - Binary or multi-valued feedback.
 - Fairness is based on Max-Min Fair Sharing.
 - (small demands are satisfied, unsatisfied demands share equally)

Extra information if you’re curious.
LAN Emulation

- **Motivation:** making a non-broadcast technology work as a LAN.
 - Focus on 802.x environments
- **Approach:** reuse the existing interfaces, but adapt implementation to ATM.
 - MAC - ATM mapping
 - multicast and broadcast
 - bridging
 - ARP
- **Example:** Address Resolution “Protocol” uses an ARP server instead of relying on broadcast.

Further reading - MPLS

- MPLS isn’t in the book - sorry. Juniper has a few good presentations at NANOG (the North American Network Operators Group; a big collection of ISPs):
 - http://www.nanog.org/mtg-0310/minei.html
 - http://www.nanog.org/mtg-0402/minei.html
 - Practical and realistic view of what people are doing _today_ with MPLS.
IP Switching

- How to use ATM hardware without the software.
 - ATM switches are very fast data switches
 - software adds overhead, cost

- The idea is to identify flows at the IP level and to create specific VCs to support these flows.
 - flows are identified on the fly by monitoring traffic
 - flow classification can use addresses, protocol types, ...
 - can distinguish based on destination, protocol, QoS

- Once established, data belonging to the flow bypasses level 3 routing.
 - never leaves the ATM switch

- Interoperates fine with “regular” IP routers.
 - detects and collaborates with neighboring IP switches

IP Switching Example
IP Switching Example

IP Switching Example
IP Switching Discussion

- IP switching selectively optimizes the forwarding of specific flows.
 - Offloads work from the IP router, so for a given size router, a less powerful forwarding engine can be used
 - Can fall back on traditional IP forwarding if there are failures

- IP switching couples a router with an ATM switching using the GSMP protocol.
 - General Switch Management Protocol

- IP switching can be used for flows with different granularity.
 - Flows belonging to an application .. Organization
 - Controlled by the classifier
An Alternative Tag Switching

- Instead of monitoring traffic to identify flows to optimize, use routing information to guide the creation of “switched” paths.
 - Switched paths are set up as a side effect of filling in forwarding tables
- Generalize to other types of hardware.
- Also introduced stackable tags.
 - Made it possible to temporarily merge flows and to demultiplex them without doing an IP route lookup
 - Requires variable size field for tag

IP Switching versus Tag Switching

- Flows versus routes.
 - tags explicitly cover groups of routes
 - tag bindings set up as part of route establishment
 - flows in IP switching are driven by traffic and detected by “filters”
 - Supports both fine grain application flows and coarser grain flow groups
- Stackable tags.
 - provides more flexibility
- Generality
 - IP switching focuses on ATM
 - not clear that this is a fundamental difference
Packets over SONET

- Same as statically configured ATM pipes, but pipes are SONET channels.

- Properties.
 - Bandwidth management is much less flexible
 - Much lower transmission overhead (no ATM headers)