

15-441 Computer Networking

Lecture 10 - Routers and Routing

Peter Steenkiste

Departments of Computer Science and Electrical and Computer Engineering

15-441 Networking, Spring 2008 http://www.cs.cmu.edu/~dga/15-441/S08

	Outline
	•ICMP
• How do Routers Works?	
• Routing	
• Distance vector	

Internet Control Message
 Protocol (ICMP)

- Short messages used to send error \& other control information
- Examples
» Ping request / response
- Can use to check whether remote host reachable
» Destination unreachable
- Indicates how packet got \& why couldn't go further
" Flow control
- Slow down packet delivery rate
» Redirect
- Suggest alternate routing path for future messages
" Router solicitation / advertisement
- Helps newly connected host discover local router
» Timeout
- Packet exceeded maximum hop limit

IP MTU Discovery with ICMP

- Typically send series of packets from one host to another
- Typically, all will follow same route
» Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets
- Operation
"Send max-sized packet with "do not fragment" flag set
» If encounters problem, ICMP message will be returned
_ "Destination unreachable: Fragmentation needed"
- Usually indicates MTU encountered

IP MTU Discovery with ICMP

	Outline
	• ICMP
	• Row do Routers Works?
	8

- Queuing required when datagrams arrive from fabric faster than the line transmission rate

Router Processor

- Runs routing protocol and downloads forwarding table to forwarding engines
- Performs "slow" path processing
» ICMP error messages
» IP option processing
» Fragmentation
» Packets destined to router

Switching Via a Memory

First generation routers \rightarrow looked like PCs

- Packet copied by system's (single) CPU
- Speed limited by memory bandwidth (2 bus crossings per datagram)

Modern routers

- Input port processor performs lookup, copy into memory
- Cisco Catalyst 8500

Switching Via a Bus

Switching Via an Interconnection Network

Buffering

- Suppose we have N inputs and M outputs
»Multiple packets for same output \rightarrow output contention
»Switching fabric may force different inputs to wait \rightarrow Switch contention
- Solution - buffer packets when/where needed: input, switch, or output
- What happens when these buffers fill up? »Packets are THROWN AWAY!! This is where packet loss comes from

	Outline
• ICMP	
\bullet Rout do Routers Works?	

IP Forwarding versus Routing

- The Story So Far...
» IP addresses are structure to reflect Internet structure
» IP packet headers carry these addresses
» When Packet Arrives at Router

- Examine header to determine intended destination
- Look up in table to determine next hop in path
- Send packet out appropriate port
- How do we generate the forwarding table?

Graph Model

- Represent each router as node
- Direct link between routers represented by edge
»Symmetric links \Rightarrow undirected graph
- Edge "cost" $\mathbf{c}(\mathrm{x}, \mathrm{y})$ denotes measure of difficulty of using link " delay, \$ cost, or congestion level
- Task
" Determine least cost path from every node to every other node - Path cost E 0 = sum of link costs C

Routes from Node A

Forwarding Table for A		
Dest	Cost	Next Hop
A	0	A
B	4	B
C	6	E
D	7	B
E	2	E
F	5	E

- Properties
»Some set of shortest paths forms tree
- Shortest path spanning tree
» Solution not unique
- E.g., A-E-F-C-D also has cost 7

Ways to Compute Shortest Paths

- Centralized
» Collect graph structure in one place
» Use standard graph algorithm
» Disseminate routing tables
- Link-state
» Every node collects complete graph structure
» Each computes shortest paths from it
» Each generates own routing table
- Distance-vector
» No one has copy of graph
» Nodes construct their own tables iteratively
» Each sends information about its table to neighbors

| Routing Information Protocol |
| :--- | :--- |
| (RIP) |

RIP Staleness / Oscillation Control

- Small Infinity

"Count to infinity doesn't take very long

- Route Timer
»Every route has timeout limit of 180 seconds
- Reached when haven't received update from nex hop for 6 periods
» If not updated, set to infinity
» Soft-state refresh \rightarrow important concept!!!
- Behavior
" When router or link fails, can take minutes to stabilize

