15-441 Computer Networking Lecture 8 - Switching and Bridging

Peter Steenkiste **Departments of Computer Science and Electrical and Computer Engineering**

15-441 Networking, Spring 2008 http://www.cs.cmu.edu/~dga/15-441/S08

- What breaks when we keep adding people to the same
- Only solution: split up the people onto multiple wires
 - » But how can they talk to each other?

Problem: How to Connect LANs?

- When should these boxes forward packets between
- How do you specify a destination?
- . How does your packet find its way?

Outline

- Bridging
- Internetworks
 - » Methods for packet forwarding

Building Larger LANs: Bridges

- Extend reach of a single shared medium
- Connect two or more "segments" by copying data frames between them
 - Nonly copy data when needed → key difference from repeaters/hubs
 Reduce collision domain compared with single LAN

 - Separate segments can send at once -> much greater bandwidth

Challenge: learning which packets to copy across links

- Design goals:
 - » Self-configuring without hardware or software changes
 - » Bridge do not impact the operation of the individual LANs
- . Three parts to making bridges transparent:
 - 1) Forwarding frames
 - 2) Learning addresses/host locations
 - 3) Spanning tree algorithm

7

Learning Bridges Manually filling in bridge tables? Time consuming, error-prone Keep track of source address of packets a

 Keep track of source address of packets arriving on every link, showing what segment hosts are on

» Fill in the forwarding table based on this information

9

Spanning Tree Protocol Overview

Embed a tree that provides a single unique path to each destination:

- 1) Elect a single bridge as a root bridge
- Each bridge calculates the distance of the shortest path to the root bridge
- Each LAN identifies a designated bridge, the bridge closest to the root. It will forward packets to the root.
- Each bridge determines a root port, which will be used to send packets to the root
- Identify the ports that form the spanning tree

Spanning Tree Algorithm Steps

- Root of the spanning tree is the bridge with the lowest identifier.
- identifier.

 » All ports are part of tree
- Each bridge finds shortest path to the root.
 - » Remembers port that is on the shortest path
- Used to forward packets
 Select for each LAN the designated bridge that has
 - the shortest path to the root.

 » Identifier as tie-breaker
 - » Responsible for that LAN

Spanning Tree Algorithm

- Each node sends configuration message to all neighbors.
 - » Identifier of the sender
 - Id of the presumed root
 - Distance to the presumed root
 - » E.g. B5 sends (B5, B5, 0)
- When B receive a message, it decide whether the solution is better than their local solution.
 - A root with a lower identifier?
 - Same root but lower distance?
 - Same root, distance but sender has lower identifier?
- After convergence, each bridge knows the root, distance to root, root port, and designated bridge for each LAN.

Spanning Tree Algorithm (part 2)

- Each bridge B can now select which of its ports make up the spanning tree:
 - B's root port
 - » All ports for which B is the designated bridge on the LAN
- Bridges can not configure their
 - » Forwarding state or blocked state, depending on whether the port is part of the spanning tree
- Root periodically sends configuration messages and bridges forward them over LANs they are responsible for.

Spanning Tree Algorithm Example

- Node B2:
 - Sends (B2, B2, 0)
 - Receives (B1, B1, 0) from B1
 - » Sends (B2, B1, 1) "up"
- Continues the forwarding forever Node B1:
- Node B7:

 - Sends (B7, B7, 0)
 - » Receives (B1, B1, 0) from B1
 - Sends (B7, B1, 1) "up" and "right" » Receives (B5, B5, 0) - ignored
 - Receives (B5, B1, 1) better
 - Continues forwarding the B1 messages forever to the "right"

Ethernet Switches

- Bridges make it possible to increase LAN capacity.
 - Packets are no longer broadcasted they are only forwarded on selected links
 - » Adds a switching flavor to the broadcast LAN
- Ethernet switch is a special case of a bridge: each bridge port is connected to a single host.
 - » Can make the link full duplex (really simple protocol!)
 - » Simplifies the protocol and hardware used (only two stations on the link) - no longer full CSMA/CD
 - » Can have different port speeds on the same switch
 - Unlike in a hub, packets can be stored
 - An alternative is to use cut through switching

16

Ethernet Evolution Early Implementations ·A Local Area Network -MAC addressing, non-routable BUS or Logical Bus topology B/R ·Collision Domain, CSMA/CD ·Bridges and Repeaters for distance/capacity exter ·1-10Mbps: coax, twisted pair (10BaseT) **Current Implementations** CSMA Carrier Sens Multiple Access -Switched solution ·Little use for collision domains CD -80% of traffic leaves the LAN Servers, routers 10 x station speed -10/100/1000 Mbps, 10gig coming: Copper, Fiber .95% of new LANs are Ethernet 17

Problem: Bridging Weaknesses

- Doesn't handle incompatible LAN technologies
 - » Is interoperable within 802.* standard
- How well does it scale?

19

Outline

- Bridging
- Internetworks
 - » Methods for packet forwarding

20

What is an Internetwork?

- Multiple incompatible LANs can be physically connected by layer 3 switches called routers
- The connected networks are called an internetwork
- » The "Internet" is one (very big & successful) example of an internetwork

21

Logical Structure of Internet

- » Ad hoc interconnection of networks
 - No particular topology
 - Vastly different router & link capacities
- » Send packets from source to destination by hopping through networks
 - Router connect one network to another
- Different paths to destination may exist

22

Internet Protocol (IP)

- Hour Glass Model
 - » Create abstraction layer that hides underlying technology from network application software
 - » Make as minimal as possible
 - » Allows range of current & future technologies
 - » Can support many different types of applications

23

Problem: Internetwork Design

- How do I designate a distant host?
 - » Addressing / naming
- How do I send information to a distant host?
- » What gets sent?
- » What route should it take?
- Must support:
 - » Heterogeneity LAN technologies
 - » Scalability → ensure ability to grow to worldwide scale

Getting to a Destination

- How do you get driving directions?
- Intersections→routers
- Roads→links/networks
- Roads change slowly

Forwarding Packets

- Table of virtual circuits
 - » Connection routed through network to set up state
 - » Packets forwarded using connection state
- Source routing
 - » Packet carries path
- Table of global addresses (IP)
 - » Routers keep next hop for destination
 - » Packets carry destination address

2

Simplified Virtual Circuits

- Connection setup phase
 - »Use other means to route setup request
 - » Each router allocates flow ID on local link
- Each packet carries connection ID
 - » Sent from source with 1st hop connection ID
- Router processing
 - » Lookup flow ID simple table lookup
 - »Replace flow ID with outgoing flow ID
 - » Forward to output port

27

Simplified Virtual Circuits Example

28

Virtual Circuits

- Advantages
 - » Efficient lookup (simple table lookup)
 - » Can reserve bandwidth at connection setup
 - » Easier for hardware implementations
- Disadvantages
 - » Still need to route connection setup request
 - » More complex failure recovery must recreate connection state
- Typical use → fast router implementations
 - » ATM combined with fix sized cells
 - » MPLS tag switching for IP networks

Source Routing

- · List entire path in packet
 - » Driving directions (north 3 hops, east, etc..)
- Router processing
 - »Strip first step from packet
 - » Examine next step in directions
 - » Forward to next step

Source Routing Example

Source Routing

- Advantages
 - »Switches can be very simple and fast
- Disadvantages
 - » Variable (unbounded) header size
 - » Sources must know or discover topology (e.g., failures)
- Typical uses
 - » Ad-hoc networks (DSR)
 - » Machine room networks (Myrinet)

.

Global Addresses (IP)

- Each packet has destination address
- Each router has forwarding table of destination → next hop
 - » At v and x: destination → east
 - » At w and y: destination → south
 - » At z: destination → north
- Distributed routing algorithm for calculating forwarding tables

33

Global Address Example

Global Addresses

- Advantages
 - » Stateless simple error recovery
- Disadvantages
 - » Every switch knows about every destination
 - Potentially large tables
 - » All packets to destination take same route
 - » Need routing protocol to fill table

Comparison

	Source Routing	Global Addresses	Virtual Circuits
Header Size	Worst	OK – Large address	Best
Router Table Size	None	Number of hosts (prefixes)	Number of circuits
Forward Overhead	Best	Prefix matching (Worst)	Pretty Good
Setup Overhead	None	None	Connection Setup
Error Recovery	Tell all hosts	Tell all routers	Tell all routers and Tear down circuit and re-route

36