Lecture 6
Datalink – Framing, Switching

Peter Steenkiste
Departments of Computer Science and
Electrical and Computer Engineering
Carnegie Mellon University

15-441 Networking, Spring 2008
http://www.cs.cmu.edu/~dga/15-441/S08

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream
0 0 1 0 1 1 1 0 0 0 1

Packets

Packet
Transmission

Receiver

Sender

Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries, ...
- Media access: controlling which frame should be sent over the link next.
 - Easy for point-to-point links; half versus full duplex
 - Harder for multi-access links: who gets to send?
- Error control: error detection and correction to deal with bit errors.
 - May also include other reliability support, e.g. retransmission
- Flow control: avoid that the sender outruns the receiver.

Datalink Lectures

- Framing and error coding.
- Datalink architectures.
- Switch-based networks.
 - Packet forwarding
 - Flow and error control
 - Taking turn protocols.
- Contention-based networks: basic Ethernet.
- Ethernet bridging and switching.
- Connectivity to the home.
- Circuit-based communication

Framing

- A link layer function, defining which bits have which function.
- Minimal functionality: mark the beginning and end of packets (or frames).
- Some techniques:
 - out of band delimiters (e.g. FDDI 4B/5B control symbols)
 - frame delimiter characters with character stuffing
 - frame delimiter codes with bit stuffing
 - synchronous transmission (e.g. SONET)

Character and Bit Stuffing

- Mark frames with special character.
 - What happens when the user sends this character?
 - Use escape character when controls appear in data:
 - abc\def -> abc\def
 - Very common on serial lines, in editors, etc.
- Mark frames with special bit sequence
 - Must ensure data containing this sequence can be transmitted
 - Example: suppose 11111111 is a special sequence.
 - Transmitter inserts a 0 when this appears in the data:
 - 11111111 1 11111111 0
 - Must stuff a zero any time seven 1s appear:
 - 11111110 11111100
 - Receiver unstuffs.
Example: Ethernet Framing

- **Preamble** is 7 bytes of 10101010 (5 MHz square wave) followed by one byte of 10101111. Allows receivers to recognize start of transmission after idle channel.

SONET

- **SONET** is the Synchronous Optical Network standard for data transport over optical fiber.
- One of the design goals was to be backwards compatible with many older telco standards.
- Beside minimal framing functionality, it provides many other functions:
 - operation, administration and maintenance (OAM) communications
 - synchronization
 - multiplexing of lower rate signals
 - multiplexing for higher rates

Standardization History

- Process was started by divestiture in 1984.
 - Multiple telephone companies building their own infrastructure
 - SONET concepts originally developed by Bellcore.
 - First standardized by ANSI T1X1 group for the US.
 - Later picked up by CCITT and developed its own version.

A Word about Data Rates

- Bandwidth of telephone channel is under 4KHz, so when digitizing:
 - 8000 samples/sec * 8 bits = 64Kbits/second
- Common data rates supported by telcos in North America:
 - Modem: rate improved over the years
 - T1/DS1: 24 voice channels plus 1 bit per sample
 -
 - T3/DS3: 28 T1 channels:
 - 7 * 4 * 1.544 = 44.736 Mbits/second

Synchronous Data Transfer

- Sender and receiver are always synchronized.
 - Frame boundaries are recognized based on the clock
 - No need to continuously look for special bit sequences
 - SONET frames contain room for control and data.
 - Data frame multiplexes bytes from many users
 - Control provides information on data, management, ...

- SONET Framing

 - Base channel is STS-1 (Synchronous Transport System).
 - Takes 125 μsec and corresponds to 51.84 Mbps
 - 1 byte/frame corresponds to a 64 Kba channel (voice)
 - Transmitted on an OC-1 optical carrier (fiber link)

 - Standard ways of supporting slower and faster channels.
 - Support both old standards and future (higher) data rates

 - Actual payload frame “floats” in the synchronous frame.
 - Clocks on individual links do not have to be synchronized

<table>
<thead>
<tr>
<th>3 cols transport overhead</th>
<th>87 cols payload capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 cols transport overhead</td>
<td>87 cols payload capacity</td>
</tr>
</tbody>
</table>

 | 3 rows |
How Do We Support Lower Rates?

- 1 Byte in every consecutive frame corresponds to a 64 Kbit/second channel.
- Higher bandwidth channels hold more bytes per frame.
- Multiples of 64 Kbit/second Channels have a "telecom" flavor.
 - Fixed bandwidth
 - Just data – no headers
 - SONET multiplexers remember how bytes on one link should be mapped to bytes on the next link
 - Byte 33 on incoming link 1 is byte 97 on outgoing link 7

How Do We Support Higher Rates?

- Send multiple frames in a 125 μsec time slot.
- The properties of a channel using a single byte/ST-1 frame are maintained!
 - Constant 64 Kbit/second rate
 - Nice spacing of the byte samples
- Rates typically go up by a factor of 4.
- Two ways of doing interleaving.
 - Frame interleaving
 - Column interleaving
 - concatenated version, i.e. OC-3c

The SONET Signal Hierarchy

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>line rate</th>
<th># of DS0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS0 (POTS)</td>
<td>64 Kbs</td>
<td>1</td>
</tr>
<tr>
<td>DS1</td>
<td>1.544 Mbs</td>
<td>24</td>
</tr>
<tr>
<td>DS3</td>
<td>44.736 Mbs</td>
<td>672</td>
</tr>
<tr>
<td>OC-1</td>
<td>51.84 Mbs</td>
<td>672</td>
</tr>
<tr>
<td>OC-3</td>
<td>155 Mbs</td>
<td>2,016</td>
</tr>
<tr>
<td>OC-12</td>
<td>622 Mbs</td>
<td>6,064</td>
</tr>
<tr>
<td>OC-48</td>
<td>2.49 Gbs</td>
<td>32,256</td>
</tr>
<tr>
<td>STS-192</td>
<td>9.95 Gbs</td>
<td>129,024</td>
</tr>
<tr>
<td>STS-768</td>
<td>39.8 Gbs</td>
<td>516,096</td>
</tr>
</tbody>
</table>

STS-1 carries one DS-3 plus overhead

Using SONET in Networks

Add-drop capability allows soft configuration of networks, usually managed manually.

Self-Healing SONET Rings

SONET as Physical Layer
Error Coding

- Transmission process may introduce errors into a message.
 - Single bit errors versus burst errors
- Detection:
 - Requires a convention that some messages are invalid
 - Hence requires extra bits
 - An (n,k) code has codewords of n bits with k data bits and r = (n-k) redundant check bits
- Correction
 - Forward error correction: many related code words map to the same data word
 - Detect errors and retry transmission

Examples

- A (4,3) parity code has D=2:
 0001 0010 0100 0111 1000 1011 1101 1110
 (last bit is binary sum of previous 3, inverted - "odd parity")
- A (7,4) code with D=3 (2ED, 1EC):
 000000 0001101 0010111 0011010 010011 0101110 0110110 0111010 1100101 1101000 1110010 1111111
 HD=3

 1001111 corrects to 1001011
 Note the inherent risk in correction: consider a 2-bit error resulting in 1001011 -> 1111011.
 There are formulas to calculate the number of extra bits that are needed for a certain D.

Cyclic Redundancy Codes (CRC)

- Commonly used codes that have good error detection properties.
 - Can catch many error combinations with a small number or redundant bits
- Based on division of polynomials.
 - Errors can be viewed as adding terms to the polynomial
 - Should be unlikely that the division will still work
- Can be implemented very efficiently in hardware.
- Examples:
 - CRC-32: Ethernet
 - CRC-8, CRC-10, CRC-32: ATM

Datalink Architectures

- Packet forwarding.
- Error and flow control.
- Media access control.
- Scalability.

Media Access Control

- How do we transfer packets between two hosts connected to the same network?
- Switches connected by point-to-point links -- store-and-forward.
 - Used in WAN, LAN, and for home connections
 - Conceptually similar to "routing"
 - But at the datalink layer instead of the network layer
- Today
 - Multiple access networks -- contention based.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Need to control access to the medium
 - Mostly Thursday lecture

Basic Concept: Hamming Distance

- Hamming distance of two bit strings = number of bit positions in which they differ.
- If the valid words of a code have minimum Hamming distance D, then D-1 bit errors can be detected.
- If the valid words of a code have minimum Hamming distance D, then \(\lfloor (D-1)/2 \rfloor \) bit errors can be corrected.
A Switch-based Network

- Switches are connected by point-point links.
- Packets are forwarded hop-by-hop by the switches towards the destination.
- How does a switch work?
- How do nodes exchange packets over a link?
- How is the destination addressed?

Switching Introduction

- Idea: forward units of data based on address in header.
- Many data-link technologies use switching.
 - Virtual circuits: Frame Relay, ATM, X.25, ..
 - Packets: Ethernet, MPLS, ...
- "Switching" also happens at the network layer.
 - Layer 3: Internet protocol
 - In this case, address is an IP address
 - IP over SONET, IP over ATM, ..
- Otherwise, operation is very similar
- Switching is different from SONET mux/demux.
 - SONET channels statically configured - no addresses

An Inter-network

Internetworking Options

- Ethernet
- Framedelay
- ATM
- IP/SONET
- IP over ATM
- IP over SONET
- 802.X

Switch Architecture

- Takes in packets in one interface and has to forward them to an output interface based on the address.
- A big intersection
- Same idea for bridges, switches, routers: address look up differs
- Control processor manages the switch and executes higher level protocols.
 - E.g. routing, management,..
- The switch fabric directs the traffic to the right output port.
- The input and output ports deal with transmission and reception of packets.

Packet Forwarding: Address Lookup

- Address from header.
 - Absolute address (e.g. Ethernet)
 - IP address for routers
 - VC identifier, e.g. ATM
- Next hop: output port for packet.
- Info: priority, VC id, ...
- Table is filled in by routing protocol.
Link Flow Control and Error Control

- Naïve protocol.
- Dealing with receiver overflow: flow control.
- Dealing with packet loss and corruption: error control.
- Meta-comment: these issues are relevant at many layers.
 - Link layer: sender and receiver attached to the same "wire"
 - End-to-end: transmission control protocol (TCP) - sender and receiver are the end points of a connection
- How can we implement flow control?
 - "You may send" (windows, stop-and-wait, etc.)
 - "Please shut up" (source quench, 802.3x pause frames, etc.)
 - Where are each of these appropriate?

A Naïve Protocol

- Sender simply sends to the receiver whenever it has packets.
- Potential problem: sender can outrun the receiver.
 - Receiver too slow, buffer overflow, ...
- Not always a problem: receiver might be fast enough.

Adding Flow Control

- Stop and wait flow control: sender waits to send the next packet until the previous packet has been acknowledged by the receiver.
 - Receiver can pace the receiver
- Drawbacks: adds overheads, slowdown for long links.

Window Flow Control

- Stop and wait flow control results in poor throughput for long-delay paths: packet size/roundtrip-time.
- Solution: receiver provides sender with a window that it can fill with packets.
 - The window is backed up by buffer space on receiver
 - Receiver acknowledges the a packet every time a packet is consumed and a buffer is freed

Bandwidth-Delay Product

-

Dealing with Errors
Stop and Wait Case

- Packets can get lost, corrupted, or duplicated.
 - Error detection or correction turns corrupted packet in lost or correct packet
- Duplicate packet: use sequence numbers.
- Lost packet: time outs and acknowledgements.
 - Positive versus negative acknowledgements
 - Sender side versus receiver side timeouts
- Window based flow control: more aggressive use of sequence numbers (see transport lectures).
What is Used in Practice?

- No flow or error control.
 - E.g. regular Ethernet, just uses CRC for error detection
- Flow control only.
 - E.g. Gigabit Ethernet
- Flow and error control.
 - E.g. X.25 (older connection-based service at 64 Kbs that guarantees reliable in order delivery of data)

Datalink Layer Architectures

- Packet forwarding.
- Error and flow control.
- Media access control.
- Scalability.

Datalink Classification

- Switch-based
- Multiple Access
- Virtual Circuits
- Packet Switching
- Scheduled Access
- Random Access

Data Link

Multiple Access Protocols

- Prevent two or more nodes from transmitting at the same time over a broadcast channel.
 - If they do, we have a collision, and receivers will not be able to interpret the signal
- Several classes of multiple access protocols.
 - Partitioning the channel, e.g. frequency-division or time division multiplexing
 - With fixed partitioning of bandwidth
 - Not flexible; inefficient for bursty traffic
 - Taking turns, e.g. token-based, reservation-based protocols, polling based
 - Contention based protocols, e.g. Aloha, Ethernet
 - Next lecture

Fiber Distributed Data Interface (FDDI)

- One token holder may send, with a time limit
 - Provides known upper bound on delay.
- Optical version of 802.5 token ring, but multiple packets may travel in train; token released at end of frame
- 100 Mbps, 100km
- Optional dual ring for fault tolerance
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure

Other “Taking Turn” Protocols

- Central entity polls stations, inviting them to transmit
 - Simple design – no conflicts
 - Not very efficient – overhead of polling operation
 - Example: the “Point Control Function” mode for 802.11
- Stations reserve a slot for transmission.
 - For example, break up the transmission time in contention-based and reservation based slots
 - Contention based slots can be used for short messages or to reserve time slots
 - Communication in reservation based slots only allowed after a reservation is made
 - Issues: fairness, efficiency
MAC Protocols - Discussion

• Channel partitioning MAC protocols:
 » Share channel efficiently at high load
 » Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!
• “Taking turns” protocols
 » More flexible bandwidth allocation, but
 » Protocol can introduce unnecessary overhead and access delay at low load
• Random access MAC protocols (next lecture)
 » Efficient at low load: single node can fully utilize channel
 » High load: collision overhead