
October 2010, Greg Ganger © 1

Guest Lecture for 15-440

Disk Array Data Organizations
and RAID

October 2010, Greg Ganger © 2

Plan for today

  Why have multiple disks?
  Storage capacity, performance capacity, reliability

  Load distribution
  problem and approaches
  disk striping

  Fault tolerance
  replication
  parity-based protection

  “RAID” and the Disk Array Matrix
  Rebuild

October 2010, Greg Ganger © 3

Why multi-disk systems?

  A single storage device may not provide enough
  storage capacity, performance capacity, reliability

So, what is the simplest arrangement?

October 2010, Greg Ganger © 4

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

A0

A1

A2

A3

Just a bunch of disks (JBOD)

  Yes, it’s a goofy name
  industry really does sell “JBOD enclosures”

October 2010, Greg Ganger © 5

Disk Subsystem Load Balancing

  I/O requests are almost never evenly distributed
  Some data is requested more than other data
  Depends on the apps, usage, time, …

October 2010, Greg Ganger © 6

Disk Subsystem Load Balancing

  I/O requests are almost never evenly distributed
  Some data is requested more than other data
  Depends on the apps, usage, time, …

  What is the right data-to-disk assignment policy?
  Common approach: Fixed data placement

  Your data is on disk X, period!
  For good reasons too: you bought it or you’re paying more …

  Fancy: Dynamic data placement
  If some of your files are accessed a lot, the admin (or even

system) may separate the “hot” files across multiple disks
  In this scenario, entire files systems (or even files) are

manually moved by the system admin to specific disks

October 2010, Greg Ganger © 7

Disk Subsystem Load Balancing

  I/O requests are almost never evenly distributed
  Some data is requested more than other data
  Depends on the apps, usage, time, …

  What is the right data-to-disk assignment policy?
  Common approach: Fixed data placement

  Your data is on disk X, period!
  Fancy: Dynamic data placement

  If some of your files are accessed a lot, we may separate the “hot”
files across multiple disks
  In this scenario, entire files systems (or even files) are

manually moved by the system admin to specific disks
  Alternative: Disk striping

  Stripe all of the data across all of the disks

October 2010, Greg Ganger © 8

Disk Striping

  Interleave data across multiple disks
  Large file streaming can enjoy parallel transfers
  High throughput requests can enjoy thorough load balancing

  If blocks of hot files equally likely on all disks (really?)

stripe unit
or block

Stripe"

File Foo: "

October 2010, Greg Ganger © 9

Disk striping details

  How disk striping works
  Break up total space into fixed-size stripe units
  Distribute the stripe units among disks in round-robin
  Compute location of block #B as follows

  disk# = B % N (%=modulo, N = # of disks)
  LBN# = B / N (computes the LBN on given disk)

October 2010, Greg Ganger © 10

Now, What If A Disk Fails?

  In a JBOD (independent disk) system
  one or more file systems lost

  In a striped system
  a part of each file system lost

  Backups can help, but
  backing up takes time and effort (later in term)
  backup doesn’t help recover data lost during that day

  any data loss is a big deal to a bank or stock exchange

October 2010, Greg Ganger © 11

And they do fail

October 2010, Greg Ganger © 12

Example: 10 Devices measured over 1000 days

Sidebar: Reliability metric

  Mean Time Between Failures (MTBF)
  Usually computed by dividing a length of time by the

number of failures during that time (averaged over a large
population of items)

Day 0 Day 999

MTBF
 1000 Days
 5 failures / 10 devices 2000 Days [per device]

  Note: NOT a guaranteed lifetime for a particular item!

Basically, we divide the time by
the number of failures per
device. This gives us the

average time per failure per
device.

October 2010, Greg Ganger © 13

Sidebar: Availability metric

  Fraction of time that server is able to handle requests
  Computed from MTBF and MTTR (Mean Time To Repair)

 MTBF _
MTBF + MTTR

Availability

TBF1 TTR1 TBF2 TTR2 TBF3 TTR3

Installed Fixed Fixed Fixed

Available during these 3
periods of time.

October 2010, Greg Ganger © 14

How often are failures?

  MTBF (Mean Time Between Failures)
  MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year)

  pretty darned good, if you believe the number

  MTBFmutli-disk system = mean time to first disk failure
  which is MTBFdisk / (number of disks)
  For a striped array of 200 drives

  MTBFarray = 136 years / 200 drives = 0.65 years

October 2010, Greg Ganger © 15

Tolerating and masking disk failures

  If a disk fails, it’s data is gone
  may be recoverable, but may not be

  To keep operating in face of failure
  must have some kind of data redundancy

  Common forms of data redundancy
  replication
  erasure-correcting codes
  error-correcting codes

October 2010, Greg Ganger © 16

  Two (or more) copies
  mirroring, shadowing, duplexing, etc.

  Write both, read either

0

1

2

3

0

1

2

3

Redundancy via replicas

October 2010, Greg Ganger © 17

Mirroring & Striping

  Mirror to 2 virtual drives, where each virtual drive is
really a set of striped drives
  Provides reliability of mirroring
  Provides striping for performance (with write update costs)

October 2010, Greg Ganger © 18

Implementing Disk Mirroring

  Mirroring can be done in either software or hardware
  Software solutions are available in most OS’s

  Windows2000, Linux, Solaris
  Hardware solutions

  Could be done in Host Bus Adaptor(s)
  Could be done in Disk Array Controller

October 2010, Greg Ganger © 19

  Single failure protecting codes
  general single-error-correcting code is overkill

  General code finds error and fixes it
  disk failures are self-identifying (a.k.a. erasures)

  Don’t have to find the error
  fact: N-error-detecting code is also N-erasure-correcting

  Error-detecting codes can’t find an error, just know its there
  But if you independently know where error is, allows repair

  Parity is single-disk-failure-correcting code
  recall that parity is computed via XOR
  it’s like the low bit of the sum

Lower Cost Data Redundancy

October 2010, Greg Ganger © 20

  One extra disk
  All writes update

parity disk
  potential

bottleneck

Ap

Bp

Cp

Dp

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Simplest approach: Parity Disk

October 2010, Greg Ganger © 21

Aside: What’s Parity?

  Parity
  count number of 1’s in a byte and store a parity bit with each

byte of data
  Solve equation XOR-sum(data bits, parity) = 0

  parity bit is computed as
  If the number of 1’s is odd, store a 1
  If the number of 1’s is even, store a 0
  This is called even parity (# of ones is even)

  Example:
0x54 == 0101 01002 (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits: 0101 0100 1 

  Enables:
  Detection of single-bit errors (equation won’t work if one bit flipped)
  Reconstruction of single-bit erasures (reverse equation for unknown)

October 2010, Greg Ganger © 22

Aside: What’s Parity (con’t)
  Example

0x54 == 0101 01002 (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits: 0101 0100 1 

  What if we want to update bit 3 from “1” to “0”
  Could completely recompute the parity
  0x54  0x44

0x44 == 0100 01002 (Two 1ʼs --> parity bit is set to “0”)"
Store 9 bits: 0100 0100 0"

  Or, we could subtract out old data, then add in new data"
  How do we subtract out old data?"

–  oldData XOR oldParity"
–  1 XOR 1 == 0 " this is parity w/out dataBit3"

  How do we add in new data"
–  newData XOR newParity"
–  0 XOR 0 == 0 " " this is parity w/new dataBit3"

  Therefore, updating new data doesnʼt require one to re-read all of
the data"
  Or, for each data bit that “toggles”, toggle the parity bit"

October 2010, Greg Ganger © 23

Updating and using the parity

D D D P

Fault-Free Read

D D D P

Fault-Free Write

4
3 2 1

D D D P

Degraded Read

D D D P

Degraded Write

October 2010, Greg Ganger © 24

The parity disk bottleneck

  Reads go only to the data disks
  But, hopefully load balanced across the disks

  All writes go to the parity disk
  And, worse, usually result in Read-Modify-Write sequence
  So, parity disk can easily be a bottleneck

October 2010, Greg Ganger © 25

  Removes parity
disk bottleneck A

B

C

D

A

B

C

Dp

A

B

D

Cp

A

D

C

Bp

D

B

C

Ap

Solution: Striping the Parity

October 2010, Greg Ganger © 26

RAID Taxonomy

  Redundant Array of Inexpensive Independent Disks
  Constructed by UC-Berkeley researchers in late 80s (Garth)

  RAID 0 – Course-grained Striping with no redundancy
  RAID 1 – Mirroring of independent disks
  RAID 2 – Fine-grained data striping plus Hamming code disks

  Uses Hamming codes to detect and correct multiple errors
  Originally implemented when drives didn’t always detect errors
  Not used in real systems

  RAID 3 – Fine-grained data striping plus parity disk
  RAID 4 – Course-grained data striping plus parity disk
  RAID 5 – Course-grained data striping plus striped parity
  RAID 6 – Course-grained data striping plus 2 striped codes

October 2010, Greg Ganger © 27

RAID 6

  P+Q Redundancy
  Protects against multiple failures using Reed-Solomon codes
  Uses 2 “parity” disks

  P is parity
  Q is a second code
  It’s two equations with two unknowns, just make “bigger bits”

  Group bits into “nibbles” and add different co-efficients to each
equation (two independent equations in two unknowns)

  Similar to parity striping
  De-clusters both sets of parity across all drives
  For small writes, requires 6 I/Os

  Read old data, old parity1, old parity2
  Write new data, new parity1, new parity2

October 2010, Greg Ganger © 28

Disk array subsystems

  Sets of disks managed by a central authority
  e.g., file system (within OS) or disk array controller

  Data distribution
  squeezing maximum performance from the set of disks
  several simultaneous considerations

  intra-access parallelism: parallel transfer for large requests
  inter-access parallelism: concurrent accesses for small requests
  load balancing for heavy workloads

  Redundancy scheme
  achieving fault tolerance from the set of disks
  several simultaneous considerations

  space efficiency
  number/type of faults tolerated
  performance

October 2010, Greg Ganger © 29

Replication

Parity Disk

Striped Parity

None

Independent Fine Striping Course Striping

JBOD

Mirroring
RAID1

RAID0+1

Gray90

RAID0

RAID3 RAID4

RAID5

The Disk Array Matrix

October 2010, Greg Ganger © 30

Back to Mean Time To Data Loss (MTTDL)

  MTBF (Mean Time Between Failures)
  MTBFdisk ~ 1,200,00 hours (~136 years)

  pretty darned good, if you believe the number

  MTBFmutli-disk system = mean time to first disk failure
  which is MTBFdisk / (number of disks)
  For a striped array of 200 drives

  MTBFarray = 136 years / 200 drives = 0.65 years

October 2010, Greg Ganger © 31

Reliability without rebuild

  200 data drives with MTBFdrive
  MTTDLarray = MTBFdrive / 200

  Add 200 drives and do mirroring
  MTBFpair = (MTBFdrive / 2) + MTBFdrive = 1.5 * MTBFdrive
  MTTDLarray = MTBFpair / 200 = MTBFdrive / 133

  Add 50 drives, each with parity across 4 data disks
  MTBFset = (MTBFdrive / 5) + (MTBFdrive / 4) = 0.45 * MTBFdrive
  MTTDLarray = MTBFset / 50 = MTBFdrive / 111

October 2010, Greg Ganger © 32

Rebuild: restoring redundancy after failure

  After a drive failure
  data is still available for access
  but, a second failure is BAD

  So, should reconstruct the data onto a new drive
  on-line spares are common features of high-end disk arrays

  reduce time to start rebuild
  must balance rebuild rate with foreground performance impact

  a performance vs. reliability trade-offs

  How data is reconstructed
  Mirroring: just read good copy
  Parity: read all remaining drives (including parity) and compute

October 2010, Greg Ganger © 33

Reliability consequences of adding rebuild

  No data loss, if fast enough
  That is, if first failure fixed before second one happens

  New math is…
  MTTDLarray = MTBFfirstdrive * (1 / prob of 2nd failure before repair)
  … which is MTTRdrive / MTBFseconddrive

  For mirroring
  MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTTRdrive)

  For 5-disk parity-protected arrays
  MTBFset = (MTBFdrive / 5) * (MTBFdrive / 4 / MTTRdrive)

October 2010, Greg Ganger © 34

Three modes of operation

  Normal mode
  everything working; maximum efficiency

  Degraded mode
  some disk unavailable
  must use degraded mode operations

October 2010, Greg Ganger © 35

Three modes of operation

  Normal mode
  everything working; maximum efficiency

  Degraded mode
  some disk unavailable
  must use degraded mode operations

  Rebuild mode
  reconstructing lost disk’s contents onto spare
  degraded mode operations plus competition with rebuild

October 2010, Greg Ganger © 36

Mechanics of rebuild

  Background process
  use degraded mode read to reconstruct data
  then, write it to replacement disk

  Implementation issues
  Interference with foreground activity and controlling rate

  rebuild is important for reliability
  foreground activity is important for performance

  Using the rebuilt disk
  for rebuilt part, reads can use replacement disk
  must balance performance benefit with rebuild interference

