Guest Lecture for 15-440

Disk Array Data Organizations
and RAID

October 2010, Greg Ganger ©

Plan for today

¢ Why have multiple disks?

m Storage capacity, performance capacity, reliability
+ Load distribution

m problem and approaches

m disk striping
+ Fault tolerance

m replication
m parity-based protection

¢ "RAID"” and the Disk Array Matrix
+ Rebuild

October 2010, Greg Ganger ©

Why multi-disk systems?

¢ A single storage device may not provide enough
m storage capacity, performance capacity, reliability

S0, what is the simplest arrangement?

October 2010, Greg Ganger ©

A0 BO CO0 DO
1 M~ M~ |
Al Bl Cl DI
1 M~ M~ [
A2 B2 C2 D2
1 M~ M~ |
A3 B3 C3 D3
N— N— N— N—

Just a bunch of disks (JBOD)

¢ Yes, it's a goofy name
m industry really does sell “JBOD enclosures”

October 2010, Greg Ganger ©

Disk Subsystem Load Balancing

+ |/O requests are almost never evenly distributed
m Some data is requested more than other data
s Depends on the apps, usage, time, ...

October 2010, Greg Ganger ©

Disk Subsystem Load Balancing

+ |/O requests are almost never evenly distributed
m Some data is requested more than other data
s Depends on the apps, usage, time, ...

¢ What is the right data-to-disk assignment policy?

s Common approach: Fixed data placement

e Your data is on disk X, period!
e For good reasons too: you bought it or you're paying more ...

s Fancy: Dynamic data placement
e If some of your files are accessed a lot, the admin (or even
system) may separate the “hot” files across multiple disks

+ In this scenario, entire files systems (or even files) are
manually moved by the system admin to specific disks

October 2010, Greg Ganger ©

Disk Subsystem Load Balancing

+ |/O requests are almost never evenly distributed
m Some data is requested more than other data
s Depends on the apps, usage, time, ...

¢ What is the right data-to-disk assignment policy?

s Common approach: Fixed data placement
e Your data is on disk X, period!
s Fancy: Dynamic data placement
e If some of your files are accessed a lot, we may separate the “hot”
files across multiple disks
+ In this scenario, entire files systems (or even files) are
manually moved by the system admin to specific disks
m Alternative: Disk striping
e Stripe all of the data across all of the disks

October 2010, Greg Ganger © 7

Disk Striping

+ Interleave data across multiple disks
m Large file streaming can enjoy parallel transfers

s High throughput requests can enjoy thorough load balancing
e If blocks of hot files equally likely on all disks (really?)

stripe unit

or block

Stripe [=——

October 2010, Greg Ganger © 8

Disk striping details

¢ How disk striping works
m Break up total space into fixed-size stripe units
m Distribute the stripe units among disks in round-robin

s Compute location of block #B as follows
e disk# =B % N (%=modulo, N = # of disks)
e LBN#=B/N (computes the LBN on given disk)

October 2010, Greg Ganger ©

Now, What If A Disk Fails?

¢ In a JBOD (independent disk) system

m one or more file systems lost

¢ |n a striped system
m a part of each file system lost

¢ Backups can help, but
m backing up takes time and effort (later in term)

m backup doesn’t help recover data lost during that day
e any data loss is a big deal to a bank or stock exchange

October 2010, Greg Ganger ©

10

And they do fall

Disk drive failure is top bugbear for IT pros

By: John Leyden
Posted: 13/03/2001 at 16:17 GMT

Hard drive crashes are the number one concern for systems
administrators in charge of keeping storage systems up and
running.

That's the conclusion of a survey of 900 IT professionals, 61 per
cent of which rated hard-disk failure as their most pressing
concern when it came to hard drive problems. Running out of disk
drive space was cited as the second most important issue, and
was rated as their top bug bear by 27 per cent of respondents to
the survey.

The study, conducted by Survey.com for Executive Software, also
reported that managers estimated their direct cost of a hard-drive

failure at $15,000 per incident, a figure which doesn't include lost

productivity and or the effects on sales while systems are down.

October 2010, Greg Ganger ©

Sidebar: Reliability metric

¢ Mean Time Between Failures (MTBF)
s Usually computed by dividing a length of time by the
number of failures during that time (averaged over a large

population of items) ~
Basically, we divide the time by
Example: 10 Device the number of failures per
device. This gives us the
average time per failure per 9

1000 Days 7/

5 failures / 10 devices 2000 Days [per device]

)

Q

<

o

m
TERRL BN

MTBF —

¢ Note: NOT a guaranteed lifetime for a particular item!

October 2010, Greg Ganger © 12

Sidebar: Availability metric

¢ Fraction of time that server is able to handle requests
s Computed from MTBF and MTTR (Mean Time To Repair)

. . MTBF
Availability — =
MTBF + MTTR
Inst_alled Fix_ed Fix_ed Fix_ed
€ > € >k >

TBF, TTR, ﬁz TTR,: TBF, TTR;

LAvaiIabIe during these 3 J

periods of time.

October 2010, Greg Ganger © 13

How often are failures?

¢ MTBF (Mean Time Between Failures)
s MTBF, ~ 1,200,00 hours (~136 years, <1% per year)
e pretty darned good, if you believe the number
¢ MTBF . tigisk system = Mean time to first disk failure
m Which is MTBF,, / (number of disks)

m For a striped array of 200 drives
e MTBF_. .., = 136 years / 200 drives = 0.65 years

array

14

Tolerating and masking disk failures

o If a disk fails, it's data is gone
m Mmay be recoverable, but may not be

& To keep operating in face of failure
s must have some kind of data redundancy

¢ Common forms of data redundancy
m replication
m erasure-correcting codes
m error-correcting codes

October 2010, Greg Ganger ©

15

Redundancy via replicas

¢ Two (or more) copies
m Mirroring, shadowing, duplexing, etc.

¢ Write both, read either

5 -
0 2
~— ~—
1 3
~ ~

October 2010, Greg Ganger ©

Mirroring & Striping

¢ Mirror to 2 virtual drives, where each virtual drive is

really a set of striped drives
m Provides reliability of mirroring
m Provides striping for performance (with write update costs)

October 2010, Greg Ganger © 17

Implementing Disk Mirroring

¢ Mirroring can be done in either software or hardware
¢ Software solutions are available in most OS’s
s Windows2000, Linux, Solaris

& Hardware solutions
s Could be done in Host Bus Adaptor(s)
s Could be done in Disk Array Controller

October 2010, Greg Ganger ©

Lower Cost Data Redundancy

+ Single failure protecting codes

m general single-error-correcting code is overkill
e General code finds error and fixes it

m disk failures are self-identifying (a.k.a. erasures)
e Don’t have to find the error

m fact: N-error-detecting code is also N-erasure-correcting
e Error-detecting codes can'’t find an error, just know its there
e But if you independently know where error is, allows repair

+ Parity is single-disk-failure-correcting code
m recall that parity is computed via XOR
m it's like the low bit of the sum

October 2010, Greg Ganger © 19

Simplest approach: Parity Disk

¢ One extra disk
¢ All writes update

arity disk
p- po):ential B B B B Bp
U N N I . I N

bottleneck

October 2010, Greg Ganger © 20

Aside: What's Parity?

o Parity
m count number of 1's in a byte and store a parity bit with each

byte of data
e Solve equation XOR-sum(data bits, parity) =0
m parity bit is computed as
e If the number of 1’s is odd, store a 1
e If the number of 1’s is even, store a 0
e This is called even parity (# of ones is even)
s Example:
0x54 == 0101 0100, (Three 1’s --> parity bit is set to “1”)
Store 9 bits: 0101 0100 1

s Enables:
e Detection of single-bit errors (equation won'’t work if one bit flipped)

e Reconstruction of single-bit erasures (reverse equation for unknown)

October 2010, Greg Ganger © 21

Aside: What's Parity (con't)

¢ Example
Ox54 ==0101 0100, (Three 1’s --> parity bit is set to “1”)
Store 9 bits: 0101 0100 1

s What if we want to update bit 3 from “1” to “0”
e Could completely recompute the parity
e 0x54 - 0x44
O0x44 == 0100 0100, (Two 1’s --> parity bit is set to “0”)
Store 9 bits: 0100 0100 0O
e Or, we could subtract out old data, then add in new data
+ How do we subtract out old data?
— oldData XOR oldParity
— 1 XOR 1 ==0 < thisis parity w/out dataBit3
+ How do we add in new data
— newData XOR newParity
- 0 XOR 0==0 < this is parity w/new dataBit3

m Therefore, updating new data doesn’t require one to re-read all of

the data
e Or, for each data bit that “toggles”, toggle the parity bit

October 2010, Greg Ganger ©

Updating and using the parity

Fault-Free Read Fault-Free Write
> D
— >
2| |@ e ¥
D D . D D D
Degraded Read Degraded Write
D= —®
([0 dE

October 2010, Greg Ganger ©

23

The parity disk bottleneck

¢ Reads go only to the data disks
s But, hopefully load balanced across the disks

+ All writes go to the parity disk

s And, worse, usually result in Read-Modify-Write sequence
m S0, parity disk can easily be a bottleneck

October 2010, Greg Ganger ©

24

Solution: Striping the Parity

¢ Removes parity
disk bottleneck

October 2010, Greg Ganger ©

25

RAID Taxonomy

¢ Redundant Array of Inexpensive Independent Disks
m Constructed by UC-Berkeley researchers in late 80s (Garth)

¢ RAID 0 - Course-grained Striping with no redundancy

RAID 1 — Mirroring of independent disks

¢ RAID 2 - Fine-grained data striping plus Hamming code disks
s Uses Hamming codes to detect and correct multiple errors

m Originally implemented when drives didn’t always detect errors
m Not used in real systems

RAID 3 — Fine-grained data striping plus parity disk

RAID 4 — Course-grained data striping plus parity disk
RAID 5 — Course-grained data striping plus striped parity
RAID 6 — Course-grained data striping plus 2 striped codes

4

® 6 o6 o

October 2010, Greg Ganger © 26

RAID 6

¢ P+Q Redundancy
m Protects against multiple failures using Reed-Solomon codes

m Uses 2 “parity” disks
e P is parity
e Q is a second code
e It's two equations with two unknowns, just make “bigger bits”
+ Group bits into “nibbles” and add different co-efficients to each
equation (two independent equations in two unknowns)
m Similar to parity striping
e De-clusters both sets of parity across all drives
e For small writes, requires 6 |I/Os
+ Read old data, old parity1, old parity2
+ Write new data, new parity1, new parity2

October 2010, Greg Ganger © 27

Disk array subsystems

¢ Sets of disks managed by a central authority
m e.g., file system (within OS) or disk array controller

¢ Data distribution
m squeezing maximum performance from the set of disks

m Several simultaneous considerations

e intra-access parallelism: parallel transfer for large requests
e inter-access parallelism: concurrent accesses for small requests
e load balancing for heavy workloads

¢ Redundancy scheme
m achieving fault tolerance from the set of disks

m several simultaneous considerations
e space efficiency
e number/type of faults tolerated
e performance

October 2010, Greg Ganger © 28

The Disk Array Matrix

Independent | Fine Striping | Course Striping
None JBOD RAIDO
Replication MFi{ch)gqg RAIDO+1
Parity Disk RAID3 RAID4
Striped Parity Gray90 RAID5

October 2010, Greg Ganger ©

Back to Mean Time To Data Loss (MTTDL)

¢ MTBF (Mean Time Between Failures)
s MTBF g ~ 1,200,00 hours (~136 years)
e pretty darned good, if you believe the number
¢ MTBF . tigisk system = Mean time to first disk failure
m Which is MTBF,, / (number of disks)

m For a striped array of 200 drives
e MTBF_. .., = 136 years / 200 drives = 0.65 years

array

Octobe 30

Reliability without rebuild

¢ 200 data drives with MTBF
m MTTDL = MTBF / 200

array drive

drive

¢ Add 200 drives and do mirroring
s MTBF__ = (MTBF,,./2)+ MTBF,.,. = 1.5* MTBF

pair — drive
s MTTDL,.., = MTBF._. /200 = MTBF,.. /133

array pair

drive

¢ Add 50 drives, each with parity across 4 data disks
s MTBF,_ = (MTBF,../5)+ (MTBF,.,/4)=0.45* MTBF
= MTTDL,,., = MTBF,/50 = MTBF ./ 111

array set drive

October 2010, Greg Ganger ©

drive

31

Rebuild: restoring redundancy after failure

¢ After a drive failure
m data is still available for access
m but, a second failure is BAD
¢ S0, should reconstruct the data onto a new drive

m on-line spares are common features of high-end disk arrays
e reduce time to start rebuild

s must balance rebuild rate with foreground performance impact
e a performance vs. reliability trade-offs
¢ How data is reconstructed
s Mirroring: just read good copy
m Parity: read all remaining drives (including parity) and compute

October 2010, Greg Ganger ©

32

Reliability consequences of adding rebuild

+ No data loss, if fast enough
m [hatis, if first failure fixed before second one happens

¢ New math is...
s MTTDL,, ., = MTBFgaive = (1 / prob of 2" failure before repair)

array

m ... Whichis MTTR . / MTBF . nqdrive
¢ For mirroring
u IVITBFpair = (MTBFdrive / 2) * (MTBFdrive / IVITTRdrive)

& For 5-disk parity-protected arrays

s MTBF_,= (MTBF,./9) " (MTBF /4 /MTTR.)

drive

October 2010, Greg Ganger © 33

Three modes of operation

¢ Normal mode
m everything working; maximum efficiency

¢ Degraded mode
s some disk unavailable
m Mmust use degraded mode operations

October 2010, Greg Ganger ©

34

Three modes of operation

+ Normal mode

m everything working; maximum efficiency
¢ Degraded mode

s some disk unavailable

m Mmust use degraded mode operations

¢ Rebuild mode
m reconstructing lost disk’s contents onto spare
m degraded mode operations plus competition with rebuild

October 2010, Greg Ganger ©

35

Mechanics of rebuild

¢ Background process
m use degraded mode read to reconstruct data
m then, write it to replacement disk

+ Implementation issues

m Interference with foreground activity and controlling rate
e rebuild is important for reliability
e foreground activity is important for performance
s Using the rebuilt disk
e for rebuilt part, reads can use replacement disk
e must balance performance benefit with rebuild interference

October 2010, Greg Ganger © 36

