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Guest Lecture for 15-440 

Disk Array Data Organizations 
and RAID 



October 2010, Greg Ganger © 2 

Plan for today 

  Why have multiple disks? 
  Storage capacity, performance capacity, reliability 

  Load distribution 
  problem and approaches 
  disk striping 

  Fault tolerance 
  replication 
  parity-based protection 

  “RAID” and the Disk Array Matrix 
  Rebuild 
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Why multi-disk systems? 

  A single storage device may not provide enough 
  storage capacity, performance capacity, reliability 

So, what is the simplest arrangement? 



October 2010, Greg Ganger © 4 

B0 

B1 

B2 

B3 

C0 

C1 

C2 

C3 

D0 

D1 

D2 

D3 

A0 

A1 

A2 

A3 

Just a bunch of disks (JBOD) 

  Yes, it’s a goofy name 
  industry really does sell “JBOD enclosures” 
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Disk Subsystem Load Balancing 

  I/O requests are almost never evenly distributed 
  Some data is requested more than other data 
  Depends on the apps, usage, time, …  
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Disk Subsystem Load Balancing 

  I/O requests are almost never evenly distributed 
  Some data is requested more than other data 
  Depends on the apps, usage, time, …  

  What is the right data-to-disk assignment policy? 
  Common approach: Fixed data placement 

  Your data is on disk X, period! 
  For good reasons too: you bought it or you’re paying more … 

  Fancy: Dynamic data placement 
  If some of your files are accessed a lot, the admin (or even 

system) may separate the “hot” files across multiple disks 
  In this scenario, entire files systems (or even files) are 

manually moved by the system admin to specific disks 
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Disk Subsystem Load Balancing 

  I/O requests are almost never evenly distributed 
  Some data is requested more than other data 
  Depends on the apps, usage, time, …  

  What is the right data-to-disk assignment policy? 
  Common approach: Fixed data placement 

  Your data is on disk X, period! 
  Fancy: Dynamic data placement 

  If some of your files are accessed a lot, we may separate the “hot” 
files across multiple disks 
  In this scenario, entire files systems (or even files) are 

manually moved by the system admin to specific disks 
  Alternative: Disk striping 

  Stripe all of the data across all of the disks 
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Disk Striping 

  Interleave data across multiple disks 
  Large file streaming can enjoy parallel transfers  
  High throughput requests can enjoy thorough load balancing 

  If blocks of hot files equally likely on all disks (really?) 

stripe unit  
or block 

Stripe"

File Foo: "
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Disk striping details 

  How disk striping works 
  Break up total space into fixed-size stripe units 
  Distribute the stripe units among disks in round-robin 
  Compute location of block #B as follows 

  disk# = B % N   (%=modulo, N = # of disks) 
  LBN# = B / N    (computes the LBN on given disk) 
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Now, What If A Disk Fails? 

  In a JBOD (independent disk) system 
  one or more file systems lost 

  In a striped system 
  a part of each file system lost 

  Backups can help, but 
  backing up takes time and effort (later in term) 
  backup doesn’t help recover data lost during that day 

  any data loss is a big deal to a bank or stock exchange 
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And they do fail 
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Example: 10 Devices measured over 1000 days 

Sidebar: Reliability metric 

  Mean Time Between Failures (MTBF) 
  Usually computed by dividing a length of time by the 

number of failures during that time (averaged over a large 
population of items) 

Day 0 Day 999 

MTBF 
          1000 Days     
  5 failures / 10 devices 2000 Days [per device] 

  Note: NOT a guaranteed lifetime for a particular item! 

Basically, we divide the time by 
the number of failures per 
device.  This gives us the 

average time per failure per 
device. 
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Sidebar: Availability metric 

  Fraction of time that server is able to handle requests 
  Computed from MTBF and MTTR (Mean Time To Repair) 

       MTBF   _ 
MTBF + MTTR 

Availability 

TBF1 TTR1 TBF2 TTR2 TBF3 TTR3 

Installed Fixed Fixed Fixed 

Available during these 3 
periods of time. 
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How often are failures? 

  MTBF (Mean Time Between Failures) 
  MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year) 

  pretty darned good, if you believe the number 

  MTBFmutli-disk system = mean time to first disk failure 
  which is MTBFdisk / (number of disks) 
  For a striped array of 200 drives 

  MTBFarray = 136 years / 200 drives = 0.65 years 
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Tolerating and masking disk failures 

  If a disk fails, it’s data is gone 
  may be recoverable, but may not be 

  To keep operating in face of failure 
  must have some kind of data redundancy 

  Common forms of data redundancy 
  replication 
  erasure-correcting codes 
  error-correcting codes 
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  Two (or more) copies 
  mirroring, shadowing, duplexing, etc. 

  Write both, read either 
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Redundancy via replicas 
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Mirroring & Striping 

  Mirror to 2 virtual drives, where each virtual drive is 
really a set of striped drives 
  Provides reliability of mirroring 
  Provides striping for performance (with write update costs) 
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Implementing Disk Mirroring 

  Mirroring can be done in either software or hardware 
  Software solutions are available in most OS’s 

  Windows2000, Linux, Solaris 
  Hardware solutions 

  Could be done in Host Bus Adaptor(s) 
  Could be done in Disk Array Controller 



October 2010, Greg Ganger © 19 

  Single failure protecting codes 
  general single-error-correcting code is overkill 

  General code finds error and fixes it 
  disk failures are self-identifying (a.k.a. erasures) 

  Don’t have to find the error 
  fact: N-error-detecting code is also N-erasure-correcting 

  Error-detecting codes can’t find an error, just know its there 
  But if you independently know where error is, allows repair 

  Parity is single-disk-failure-correcting code 
  recall that parity is computed via XOR 
  it’s like the low bit of the sum 

Lower Cost Data Redundancy 
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  One extra disk 
  All writes update 

parity disk 
  potential 

bottleneck 
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Simplest approach: Parity Disk 
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Aside: What’s Parity? 

  Parity 
  count number of 1’s in a byte and store a parity bit with each 

byte of data 
  Solve equation XOR-sum( data bits, parity ) = 0 

  parity bit is computed as 
  If the number of 1’s is odd, store a 1 
  If the number of 1’s is even, store a 0 
  This is called even  parity (# of ones is even) 

  Example: 
0x54         == 0101  01002    (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits:   0101  0100  1 

  Enables: 
  Detection of single-bit errors (equation won’t work if one bit flipped) 
  Reconstruction of single-bit erasures (reverse equation for unknown) 
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Aside: What’s Parity (con’t) 
  Example 

0x54         == 0101  01002    (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits:   0101  0100  1 

  What if we want to update bit 3 from “1” to “0” 
  Could completely recompute the parity 
  0x54  0x44 

0x44         == 0100  01002    (Two 1ʼs --> parity bit is set to “0”)"
Store 9 bits:   0100  0100  0"

  Or, we could subtract out old data, then add in new data"
  How do we subtract out old data?"

–  oldData   XOR  oldParity"
–  1   XOR    1  == 0 " this is parity w/out dataBit3"

  How do we add in new data"
–  newData XOR newParity"
–  0    XOR    0 == 0 " " this is parity w/new dataBit3"

  Therefore, updating new data doesnʼt require one to re-read all of 
the data"
  Or, for each data bit that “toggles”, toggle the parity bit"
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Updating and using the parity 

D D D P 

Fault-Free Read 

D D D P 

Fault-Free Write 

4 
3 2 1 

D D D P 

Degraded Read 

D D D P 

Degraded Write 
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The parity disk bottleneck 

  Reads go only to the data disks 
  But, hopefully load balanced across the disks 

  All writes go to the parity disk 
  And, worse, usually result in Read-Modify-Write sequence 
  So, parity disk can easily be a bottleneck 
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  Removes parity 
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Solution: Striping the Parity 
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RAID Taxonomy 

  Redundant Array of Inexpensive Independent Disks 
  Constructed by UC-Berkeley researchers in late 80s (Garth) 

  RAID 0 – Course-grained Striping with no redundancy 
  RAID 1 – Mirroring of independent disks 
  RAID 2 – Fine-grained data striping plus Hamming code disks 

  Uses Hamming codes to detect and correct multiple errors 
  Originally implemented when drives didn’t always detect errors 
  Not used in real systems 

  RAID 3 – Fine-grained data striping plus parity disk 
  RAID 4 – Course-grained data striping plus parity disk 
  RAID 5 – Course-grained data striping plus striped parity 
  RAID 6 – Course-grained data striping plus 2 striped codes 
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RAID 6 

  P+Q Redundancy 
  Protects against multiple failures using Reed-Solomon codes 
  Uses 2 “parity” disks 

  P is parity 
  Q is a second code 
  It’s two equations with two unknowns, just make “bigger bits” 

  Group bits into “nibbles” and add different co-efficients to each 
equation (two independent equations in two unknowns) 

  Similar to parity striping 
  De-clusters both sets of parity across all drives 
  For small writes, requires 6 I/Os 

  Read old data, old parity1, old parity2 
  Write new data, new parity1, new parity2 
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Disk array subsystems 

  Sets of disks managed by a central authority 
  e.g., file system (within OS) or disk array controller 

  Data distribution 
  squeezing maximum performance from the set of disks 
  several simultaneous considerations 

  intra-access parallelism: parallel transfer for large requests 
  inter-access parallelism: concurrent accesses for small requests 
  load balancing for heavy workloads 

  Redundancy scheme 
  achieving fault tolerance from the set of disks 
  several simultaneous considerations 

  space efficiency 
  number/type of faults tolerated 
  performance 
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Replication 

Parity Disk 

Striped Parity 

None 

Independent Fine Striping Course Striping 

JBOD 

Mirroring 
RAID1 

RAID0+1 

Gray90 

RAID0 

RAID3 RAID4 

RAID5 

The Disk Array Matrix 
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Back to Mean Time To Data Loss (MTTDL) 

  MTBF (Mean Time Between Failures) 
  MTBFdisk ~ 1,200,00 hours (~136 years) 

  pretty darned good, if you believe the number 

  MTBFmutli-disk system = mean time to first disk failure 
  which is MTBFdisk / (number of disks) 
  For a striped array of 200 drives 

  MTBFarray = 136 years / 200 drives = 0.65 years 
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Reliability without rebuild 

  200 data drives with MTBFdrive 
  MTTDLarray = MTBFdrive / 200 

  Add 200 drives and do mirroring 
  MTBFpair = (MTBFdrive / 2) + MTBFdrive = 1.5 * MTBFdrive 
  MTTDLarray = MTBFpair / 200 = MTBFdrive / 133 

  Add 50 drives, each with parity across 4 data disks 
  MTBFset = (MTBFdrive / 5) + (MTBFdrive / 4) = 0.45 * MTBFdrive  
  MTTDLarray = MTBFset / 50 = MTBFdrive / 111 
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Rebuild: restoring redundancy after failure 

  After a drive failure 
  data is still available for access 
  but, a second failure is BAD 

  So, should reconstruct the data onto a new drive 
  on-line spares are common features of high-end disk arrays 

  reduce time to start rebuild 
  must balance rebuild rate with foreground performance impact  

  a performance vs. reliability trade-offs 

  How data is reconstructed 
  Mirroring: just read good copy 
  Parity: read all remaining drives (including parity) and compute 
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Reliability consequences of adding rebuild 

  No data loss, if fast enough 
  That is, if first failure fixed before second one happens 

  New math is… 
  MTTDLarray = MTBFfirstdrive * (1 / prob of 2nd failure before repair) 
  … which is MTTRdrive / MTBFseconddrive 

  For mirroring 
  MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTTRdrive) 

  For 5-disk parity-protected arrays 
  MTBFset = (MTBFdrive / 5) * (MTBFdrive / 4 / MTTRdrive) 
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Three modes of operation 

  Normal mode 
  everything working; maximum efficiency 

  Degraded mode 
  some disk unavailable 
  must use degraded mode operations 
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Three modes of operation 

  Normal mode 
  everything working; maximum efficiency 

  Degraded mode 
  some disk unavailable 
  must use degraded mode operations 

  Rebuild mode 
  reconstructing lost disk’s contents onto spare 
  degraded mode operations plus competition with rebuild 
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Mechanics of rebuild 

  Background process 
  use degraded mode read to reconstruct data 
  then, write it to replacement disk 

  Implementation issues 
  Interference with foreground activity and controlling rate 

  rebuild is important for reliability 
  foreground activity is important for performance 

  Using the rebuilt disk 
  for rebuilt part, reads can use replacement disk 
  must balance performance benefit with rebuild interference 


