Topics

- Large-scale computing
 - Traditional high-performance computing (HPC)
 - Cluster computing
- MapReduce
 - Definition
 - Examples
- Implementation
- Alternatives to MapReduce
- Properties
Typical HPC Machine

Compute Nodes
- High end processor(s)
- Lots of RAM

Network
- Specialized
- Very high performance

Storage Server
- RAID-based disk array
HPC Machine Example

Jaguar Supercomputer
- 3rd fastest in world

Compute Nodes
- 18,688 nodes in largest partition
- 2X 2.6Ghz 6-core AMD Opteron
- 16GB memory
- Total: 2.3 petaflop / 300 TB memory

Network
- 3D torus
 - Each node connected to 6 neighbors via 6.0 GB/s links

Storage Server
- 10PB RAID-based disk array
HPC Programming Model

- Programs described at very low level
 - Specify detailed control of processing & communications
- Rely on small number of software packages
 - Written by specialists
 - Limits classes of problems & solution methods
Bulk Synchronous Programming

Solving Problem Over Grid
- E.g., finite-element computation

Partition into Regions
- p regions for p processors

Map Region per Processor
- Local computation sequential
- Periodically communicate boundary values with neighbors
Typical HPC Operation

Characteristics
- Long-lived processes
- Make use of spatial locality
- Hold all program data in memory (no disk access)
- High bandwidth communication

Strengths
- High utilization of resources
- Effective for many scientific applications

Weaknesses
- Requires careful tuning of application to resources
- Intolerant of any variability
HPC Fault Tolerance

Checkpoint
- Periodically store state of all processes
- Significant I/O traffic

Restore
- When failure occurs
- Reset state to that of last checkpoint
- All intervening computation wasted

Performance Scaling
- Very sensitive to number of failing components
Google Data Centers

Dalles, Oregon
- Hydroelectric power @ 2¢ / KW Hr
- 50 Megawatts
 - Enough to power 60,000 homes

- Engineered for maximum modularity & power efficiency
- Container: 1160 servers, 250KW
- Server: 2 disks, 2 processors
Typical Cluster Machine

Compute + Storage Nodes
- Medium-performance processors
- Modest memory
- 1-2 disks

Network
- Conventional Ethernet switches
 - 10 Gb/s within rack
 - 100 Gb/s across racks
Machines with Disks

Lots of storage for cheap

- **Seagate Barracuda**
- **3 TB @ $130**
 - (4.3¢ / GB)
- **Compare 2007:**
 - 0.75 TB @ $266
 - 35¢ / GB

Drawbacks

- Long and highly variable delays
- Not very reliable

Not included in HPC Nodes
Oceans of Data, Skinny Pipes

No more blaming connection speeds for your losses.

Verizon FiOS – the fastest Internet available.

Plans as low $39.99/month (up to 5 Mbps).
Plus, order online & get your first month FREE!

Enter your home phone number below to check availability.

Don’t have a Verizon phone number? Qualify your address.

<table>
<thead>
<tr>
<th>Disks</th>
<th>MB / s</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seagate Barracuda</td>
<td>115</td>
<td>2.3 hours</td>
</tr>
<tr>
<td>Seagate Cheetah</td>
<td>125</td>
<td>2.2 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Networks</th>
<th>MB / s</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Internet</td>
<td>< 0.625</td>
<td>> 18.5 days</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>< 125</td>
<td>> 2.2 hours</td>
</tr>
<tr>
<td>PSC Teragrid Connection</td>
<td>< 3,750</td>
<td>> 4.4 minutes</td>
</tr>
</tbody>
</table>
Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes

- Data distributed over 100+ disks
 - Assuming uniform data partitioning
- Compute using 100+ processors
- Connected by gigabit Ethernet (or equivalent)

System Requirements

- Lots of disks
- Lots of processors
- Located in close proximity
 - Within reach of fast, local-area network
Ideal Cluster Programming Model

- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing, …
Map/Reduce Programming Model

- Map computation across many objects
 - E.g., 10^{10} Internet web pages
- Aggregate results in many different ways
- System deals with issues of resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004
MapReduce Example

- Create an word index of set of documents
MapReduce Example

- Map: generate \(\langle \text{word, count} \rangle\) pairs for all words in document
- Reduce: sum word counts across documents
Hadoop Project

File system with files distributed across nodes

- Store multiple (typically 3 copies of each file)
 - If one node fails, data still available
- Logically, any node has access to any file
 - May need to fetch across network

Map / Reduce programming environment

- Software manages execution of tasks on nodes
Hadoop MapReduce API

Requirements
- Programmer must supply Mapper & Reducer classes

Mapper
- Steps through file one line at a time
- Code generates sequence of <key, value> pairs
 - Call output.collect(key, value)
- Default types for keys & values are strings
 - Lots of low-level machinery to convert to & from other data types
 - But can use anything “writable”

Reducer
- Given key + iterator that generates sequence of values
- Generate one or more <key, value> pairs
 - Call output.collect(key, value)
public class WordCountMapper extends MapReduceBase
 implements Mapper {

 private final static Text word = new Text();
 private final static IntWritable count = new IntWritable(1);

 public void map(WritableComparable key, Writable values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 /* Get line from file */
 String line = values.toString();
 /* Split into tokens */
 StringTokenizer itr = new StringTokenizer(line.toLowerCase(),
 " 	!?:()[]','&-;|0123456789");
 while(itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 /* Emit <token,1> as key + value */
 output.collect(word, count);
 }
 }
}
public class WordCountReducer extends MapReduceBase
 implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 int cnt = 0;
 while (values.hasNext()) {
 IntWritable ival = (IntWritable) values.next();
 cnt += ival.get();
 }
 output.collect(key, new IntWritable(cnt));
 }
 }
Cluster Scalability Advantages

- Distributed system design principles lead to scalable design
- Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages

- Can use consumer-grade components
 - maximizes cost-performance
- Can have heterogenous nodes
 - More efficient technology refresh

Operational Advantages

- Minimal staffing
- No downtime
Example: Sparse Matrices with Map/Reduce

Task: Compute product $C = A \cdot B$
Assume most matrix entries are 0

Motivation
- Core problem in scientific computing
- Challenging for parallel execution
- Demonstrate expressiveness of Map/Reduce
Computing Sparse Matrix Product

Represent matrix as list of nonzero entries
\(\langle \text{row}, \text{col}, \text{value}, \text{matrixID} \rangle \)

Strategy
- Phase 1: Compute all products \(a_{i,k} \cdot b_{k,j} \)
- Phase 2: Sum products for each entry \(i,j \)
- Each phase involves a Map/Reduce
Phase 1 Map of Matrix Multiply

- Group values $a_{i,k}$ and $b_{k,j}$ according to key k
Phase 1 “Reduce” of Matrix Multiply

- Generate all products $a_{i,k} \cdot b_{k,j}$
Phase 2 Map of Matrix Multiply

- Group products $a_{i,k} \cdot b_{k,j}$ with matching values of i and j
Phase 2 Reduce of Matrix Multiply

- **Key = 1,1**
 - 1 \(-\frac{10}{C}\) → 1

- **Key = 1,2**
 - 1 \(-\frac{80}{C}\) → 2

- **Key = 2,1**
 - 2 \(-\frac{60}{C}\) → 1

- **Key = 2,2**
 - 2 \(-\frac{90}{C}\) → 2
 - 2 \(-\frac{160}{C}\) → 2

- **Key = 3,1**
 - 3 \(-\frac{120}{C}\) → 1
 - 3 \(-\frac{50}{A}\) → 1

- **Key = 3,2**
 - 3 \(-\frac{280}{C}\) → 2
 - 3 \(-\frac{180}{C}\) → 2

- **Sum products to get final entries**

\[
\begin{bmatrix}
-10 & -80 \\
-60 & -250 \\
-170 & -460
\end{bmatrix}
\]
public class P1Mapper extends MapReduceBase implements Mapper {

 public void map(WritableComparable key, Writable values, OutputCollector output, Reporter reporter) throws IOException {
 try {
 GraphEdge e = new GraphEdge(values.toString());
 IntWritable k;
 if (e.tag.equals("A"))
 k = new IntWritable(e.toNode);
 else
 k = new IntWritable(e.fromNode);
 output.collect(k, new Text(e.toString()));
 } catch (BadGraphException e) {}
 }
}

Matrix Multiply Phase 1 Mapper
Matrix Multiply Phase 1 Reducer

public class P1Reducer extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter)
 throws IOException {

 Text outv = new Text(""); // Don't really need output values
 /* First split edges into A and B categories */
 LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();
 LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
 while(values.hasNext()) {
 try {
 GraphEdge e =
 new GraphEdge(values.next().toString());
 if (e.tag.equals("A")) {
 alist.add(e);
 } else {
 blist.add(e);
 }
 } catch (BadGraphException e) {}
 }

 // Continued
// Continuation

Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while (aset.hasNext()) {
 GraphEdge aedge = aset.next();
 // For each outgoing edge
 Iterator<GraphEdge> bset = blist.iterator();
 while (bset.hasNext()) {
 GraphEdge bedge = bset.next();
 GraphEdge newe = aedge.contractProd(bedge);
 // Null would indicate invalid contraction
 if (newe != null) {
 Text outk = new Text(newe.toString());
 output.collect(outk, outv);
 }
 }
}
}
public class P2Mapper extends MapReduceBase implements Mapper {

 public void map(WritableComparable key, Writable values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 String es = values.toString();
 try {
 GraphEdge e = new GraphEdge(es);
 // Key based on head & tail nodes
 String ks = e.fromNode + " " + e.toNode;
 output.collect(new Text(ks), new Text(e.toString()));
 } catch (BadGraphException e) {}}

}
public class P2Reducer extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter) throws IOException {

 GraphEdge efinal = null;
 while (efinal == null && values.hasNext()) {
 try {
 efinal = new GraphEdge(values.next().toString());
 } catch (BadGraphException e) {}
 }

 if (efinal != null) {
 while (values.hasNext()) {
 try {
 GraphEdge eother =
 new GraphEdge(values.next().toString());
 efinal.weight += eother.weight;
 } catch (BadGraphException e) {}
 }

 if (efinal.weight != 0)
 output.collect(new Text(efinal.toString()),
 new Text(""));
 }
 }
}
Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication Primitive

- Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems

- Shortest path in graph
- Database join

Many Performance Considerations

- Kiefer, Volk, Lehner, TU Dresden
- Should do systematic comparison to other sparse matrix implementations
MapReduce Implementation

Built on Top of Parallel File System
- Google: GFS, Hadoop: HDFS
- Provides global naming
- Reliability via replication (typically 3 copies)

Breaks work into tasks
- Master schedules tasks on workers dynamically
- Typically #tasks >> #processors

Net Effect
- Input: Set of files in reliable file system
- Output: Set of files in reliable file system
MapReduce Execution

R Output Files

Reducer
Reducer
Reducer

Shuffle

Task Manager
Mapper
Mapper
Mapper

Mappers

R Reducers

Input Files (Partitioned into Blocks)
Mapping

\[K \xrightarrow{h} h(K) \subseteq \{0, \ldots, R-1\} \]

Hash Function \(h \)
- Maps each key \(K \) to integer \(i \) such that \(0 \leq i < R \)

Mapper Operation
- Reads input file blocks
- Generates pairs \(\langle K, V \rangle \)
- Writes to local file \(h(K) \)
Mapping

- Dynamically map input file blocks onto mappers
- Each generates key/value pairs from its blocks
- Each writes R files on local file system

Task Manager

Mapper

Mappers

Input Files (Partitioned into Blocks)

R local files per mapper
Shuffling

Each Reducer:
- Handles $1/R$ of the possible key values
- Fetches its file from each of M mappers
- Sorts all of its entries to group values by keys
Reducing

Each Reducer:
- Executes reducer function for each key
- Writes output values to parallel file system

R Output Files

Reducer Reducer Reducer

R Reducers
MapReduce Effect

MapReduce Step
- Reads set of files from file system
- Generates new set of files

Can iterate to do more complex processing
Map/Reduce Operation

Characteristics
- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Use disk storage to hold intermediate results

Strengths
- Great flexibility in placement, scheduling, and load balancing
- Can access large data sets

Weaknesses
- Higher overhead
- Lower raw performance
Example Parameters

Sort Benchmark

- 10^{10} 100-byte records
- Partition into $M = 15,000$ 64MB pieces
 - Key = value
 - Partition according to most significant bytes
- Sort locally with $R = 4,000$ reducers

Machine

- 1800 2Ghz Xeons
- Each with 2 160GB IDE disks
- Gigabit ethernet
- 891 seconds total
Interesting Features

Fault Tolerance
- Assume reliable file system
- Detect failed worker
 - Heartbeat mechanism
- Reschedule failed task

Stragglers
- Tasks that take long time to execute
- Might be bug, flaky hardware, or poor partitioning
- When done with most tasks, reschedule any remaining executing tasks
 - Keep track of redundant executions
 - Significantly reduces overall run time
Map/Reduce Fault Tolerance

Data Integrity
- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

Recovering from Failure
- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy
Exploring Parallel Computation Models

Map/Reduce Provides Coarse-Grained Parallelism
- Computation done by independent processes
- File-based communication

Observations
- Relatively “natural” programming model
- Research issue to explore full potential and limits
Beyond Map/Reduce

Typical Map/Reduce Applications
- Sequence of steps, each requiring map & reduce
- Series of data transformations
- Iterating until reach convergence

Strengths of Map/Reduce
- User writes simple functions, system manages complexities of mapping, synchronization, fault tolerance
- Very general
- Good for large-scale data analysis

Limitations
- No locality of data or activity
- Each map/reduce step must complete before next begins
Generalizing Map/Reduce

- Microsoft Dryad Project

Computational Model

- Acyclic graph of operators
 - But expressed as textual program
- Each takes collection of objects and produces objects
 - Purely functional model

Implementation Concepts

- Objects stored in files or memory
- Any object may be lost; any operator may fail
- Replicate & recompute for fault tolerance
- Dynamic scheduling

- # Operators >> # Processors
CMU GraphLab

- Carlos Guestrin, et al.
- Graph algorithms used in machine learning

View Computation as Localized Updates on Graph

- New value depends on own value + those of neighbors
- Update repeatedly until converge
Machine Learning Example

PageRank Computation

- Larry Page & Sergey Brinn, 1998

Rank “Importance” of Web Pages
PageRank Computation

Initially
- Assign weight 1.0 to each page

Iteratively
- Select arbitrary node and update its value

Convergence
- Results unique, regardless of selection ordering

\[R_1 \leftarrow 0.1 + 0.9 \times \left(\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5 \right) \]
PageRank with Map/Reduce

Each Iteration: Update all nodes

- **Map**: Generate values to pass along each edge
 - Key value 1: \((1, \frac{1}{2} R_2)\) \((1, \frac{1}{4} R_3)\) \((1, \frac{1}{3} R_5)\)
 - Similar for all other keys

- **Reduce**: Combine edge values to get new rank
 - \(R_1 \leftarrow 0.1 + 0.9 \times (\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5)\)
 - Similar for all other nodes

Performance

- Very slow!
- **Altavista Webgraph 2002**
 - 1.4B vertices, 6.7B edges

<table>
<thead>
<tr>
<th>Hadoop</th>
<th>800 cores</th>
<th>9000s</th>
</tr>
</thead>
</table>

\(R_1 \leftarrow 0.1 + 0.9 \times (\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5)\)
PageRank with GraphLab

Operation

- Graph partitioned across multiple processors
 - Each doing updates to its portion of graph
 - Exploits locality
 - Greater asynchrony
 - Only iterate over portions of graph where values are changing

Performance

- Altavista Webgraph 2002
 - 1.4B vertices, 6.7B edges

<table>
<thead>
<tr>
<th></th>
<th>Hadoop</th>
<th>800 cores</th>
<th>9000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype GraphLab2</td>
<td>512 cores</td>
<td>431s</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Distributed Systems Concepts Lead to Scalable Machines
- Loosely coupled execution model
- Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use
- Hadoop makes it widely available
- Great for some applications, good enough for many others

Lots of Work to be Done
- Richer set of programming models and implementations
- Expanding range of applicability
 - Problems that are data and compute intensive
 - The future of supercomputing?