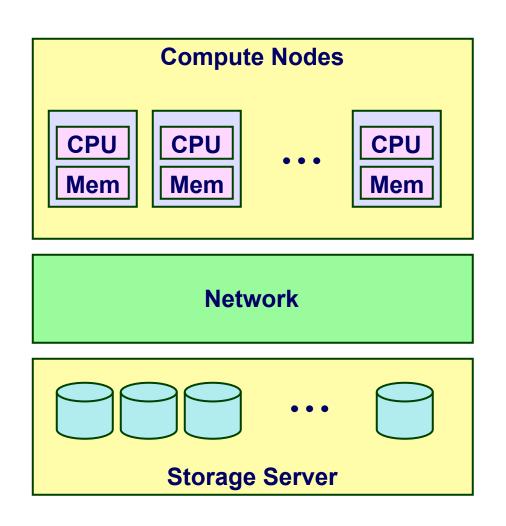
15-440

MapReduce Programming Oct 30, 2012

Topics

- Large-scale computing
 - Traditional high-performance computing (HPC)
 - Cluster computing
- MapReduce
 - Definition
 - Examples
- Implementation
- Alternatives to MapReduce
- Properties

Typical HPC Machine



Compute Nodes

- High end processor(s)
- Lots of RAM

Network

- Specialized
- Very high performance

Storage Server

RAID-based disk array

HPC Machine Example

Jaguar Supercomputer

■ 3rd fastest in world

Compute Nodes

- 18,688 nodes in largest partition
- 2X 2.6Ghz 6-core AMD Opteron
- 16GB memory
- Total: 2.3 petaflop / 300 TB memory

Network

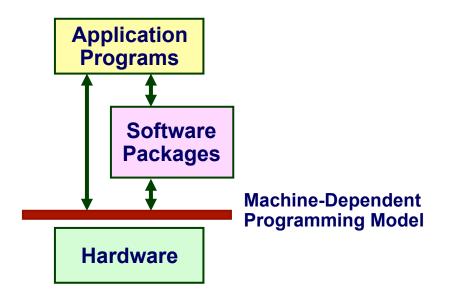
- 3D torus
 - Each node connected to 6 neighbors via 6.0 GB/s links

Storage Server

■ 10PB RAID-based disk array



HPC Programming Model



- Programs described at very low level
 - Specify detailed control of processing & communications
- Rely on small number of software packages
 - Written by specialists
 - Limits classes of problems & solution methods

Bulk Synchronous Programming

Solving Problem Over Grid

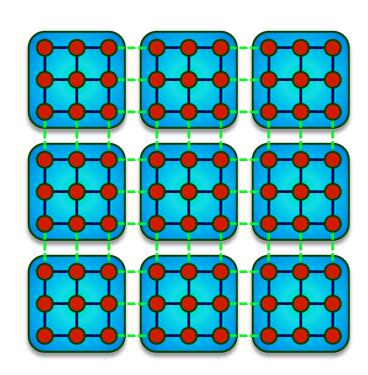
E.g., finite-element computation

Partition into Regions

p regions for p processors

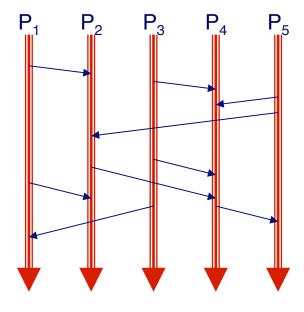
Map Region per Processor

- Local computation sequential
- Periodically communicate boundary values with neighbors



Typical HPC Operation

Message Passing



Characteristics

- Long-lived processes
- Make use of spatial locality
- Hold all program data in memory (no disk access)
- High bandwidth communication

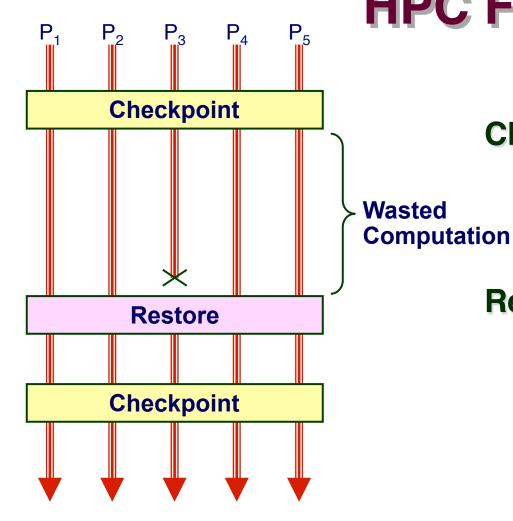
Strengths

- High utilization of resources
- Effective for many scientific applications

Weaknesses

- Requires careful tuning of application to resources
- Intolerant of any variability

HPC Fault Tolerance



Checkpoint

- Periodically store state of all processes
- Significant I/O traffic

Restore

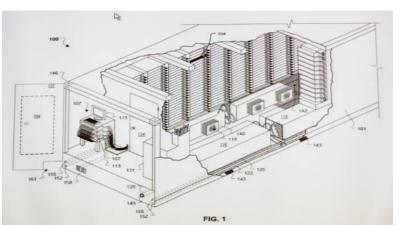
- When failure occurs
- Reset state to that of last checkpoint
- All intervening computation wasted

Performance Scaling

Very sensitive to number of failing components

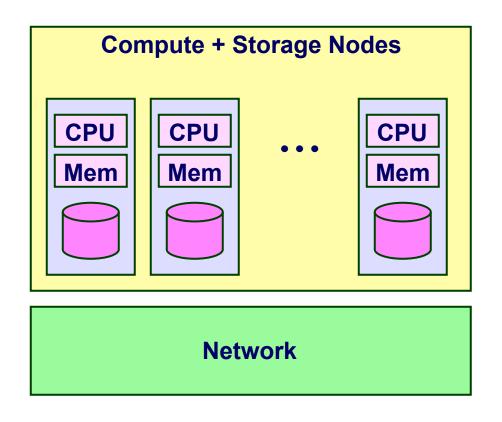
Google Data Centers

- Hydroelectric power @ 2¢ / KW Hr
- 50 Megawatts
- Enough to power 60,000 homes



- Engineered for maximum modularity & power efficiency
- Container: 1160 servers, 250KW
- Server: 2 disks, 2 processors

Typical Cluster Machine



Compute + Storage Nodes

- Mediumperformance processors
- Modest memory
- 1-2 disks

Network

- ConventionalEthernet switches
 - 10 Gb/s within rack
 - 100 Gb/s across racks

Machines with Disks

Lots of storage for cheap

- Seagate Barracuda
- **3 TB** @ \$130 (4.3¢ / GB)
- **■** Compare 2007:

0.75 TB @ \$266 35¢ / GB

Drawbacks

- Long and highly variable delays
- Not very reliable

Not included in HPC Nodes

Price: \$129.99 & this item ships for FREE with Super

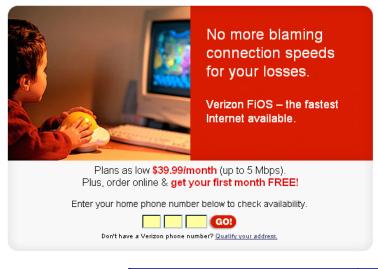
Saver Shipping. Details

You Save: \$140.00 (52%)

In Stock.

Ships from and sold by **Amazon.com** in certified <u>Frustration-Free</u> Packaging. Gift-wrap available.

Oceans of Data, Skinny Pipes



1 Terabyte

- Easy to store
- Hard to move

Disks	MB/s	Time
Seagate Barracuda	115	2.3 hours
Seagate Cheetah	125	2.2 hours
Networks	MB/s	Time
Home Internet	< 0.625	> 18.5 days
Gigabit Ethernet	< 125	> 2.2 hours
PSC Teragrid Connection	< 3,750	> 4.4 minutes

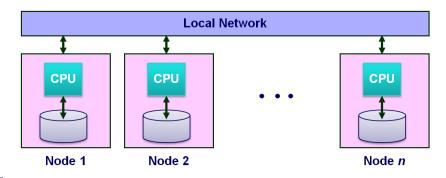
Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes

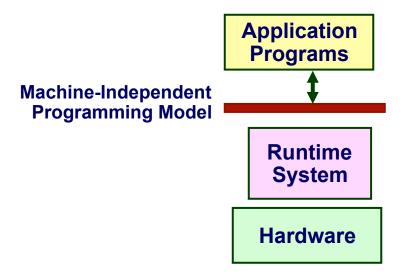
- Data distributed over 100+ disks
 - Assuming uniform data partitioning
- **Compute using 100+ processors**
- Connected by gigabit Ethernet (or equivalent)

System Requirements

- Lots of disks
- Lots of processors
- Located in close proximity
 - Within reach of fast, local-area network

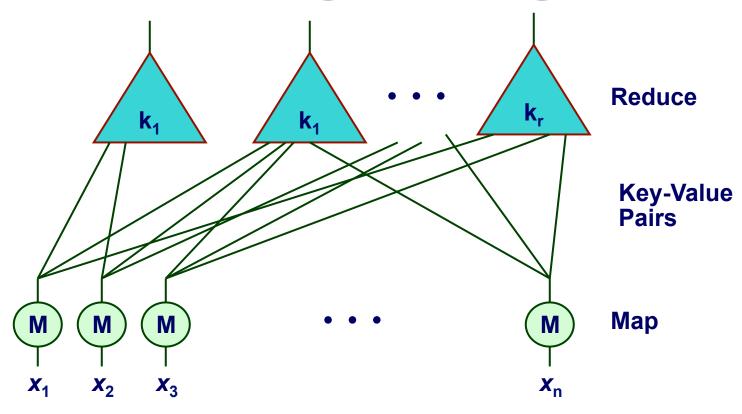


Ideal Cluster Programming Model



- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing, ...

Map/Reduce Programming Model



- Map computation across many objects
 - E.g., 10¹⁰ Internet web pages
- Aggregate results in many different ways
- System deals with issues of resource allocation & reliability

MapReduce Example

Come, Dick Come and see.

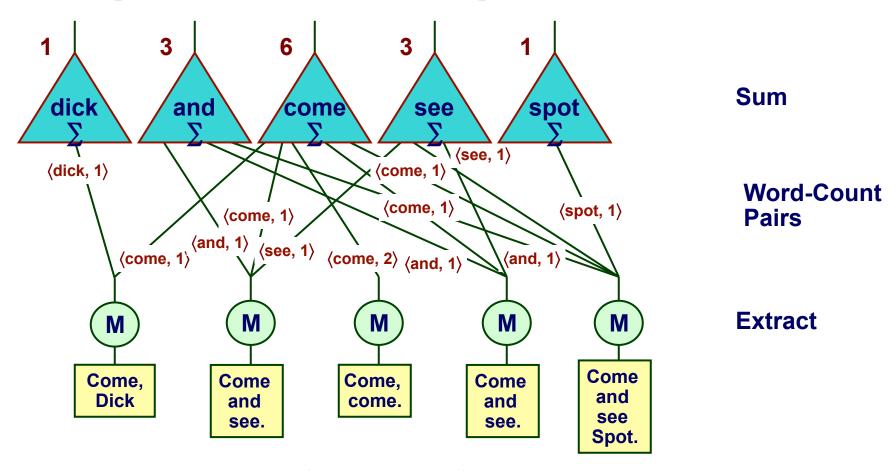
Come, come.

Come and see.

Come and see Spot.

Create an word index of set of documents

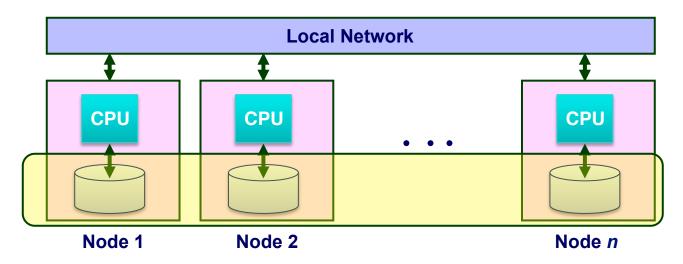
MapReduce Example



- Map: generate ⟨word, count⟩ pairs for all words in document
- Reduce: sum word counts across documents

Hadoop Project

File system with files distributed across nodes



- Store multiple (typically 3 copies of each file)
 - If one node fails, data still available
- Logically, any node has access to any file
 - May need to fetch across network

Map / Reduce programming environment

Software manages execution of tasks on nodes

Hadoop MapReduce API

Requirements

■ Programmer must supply Mapper & Reducer classes

Mapper

- Steps through file one line at a time
- Code generates sequence of <key, value> pairs
 - Call output.collect(key, value)
- Default types for keys & values are strings
 - Lots of low-level machinery to convert to & from other data types
 - But can use anything "writable"

Reducer

- Given key + iterator that generates sequence of values
- Generate one or more <key, value> pairs
 - Call output.collect(key, value)

Hadoop Word Count Mapper

```
public class WordCountMapper extends MapReduceBase
       implements Mapper {
    private final static Text word = new Text();
    private final static IntWritable count = new IntWritable(1);
    public void map (WritableComparable key, Writable values,
                   OutputCollector output, Reporter reporter)
               throws IOException {
       /* Get line from file */
       String line = values.toString();
       /* Split into tokens */
       StringTokenizer itr = new StringTokenizer(line.toLowerCase(),
                                      "\t.!?:()[],'&-;|0123456789");
       while(itr.hasMoreTokens()) {
           word.set(itr.nextToken());
           /* Emit <token,1> as key + value
           output.collect(word, count);
```

Hadoop Word Count Reducer

Cluster Scalability Advantages

- Distributed system design principles lead to scalable design
- Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages

- Can use consumer-grade components
 - maximizes cost-peformance
- Can have heterogenous nodes
 - More efficient technology refresh

Operational Advantages

- Minimal staffing
- No downtime

Example: Sparse Matrices with Map/Reduce

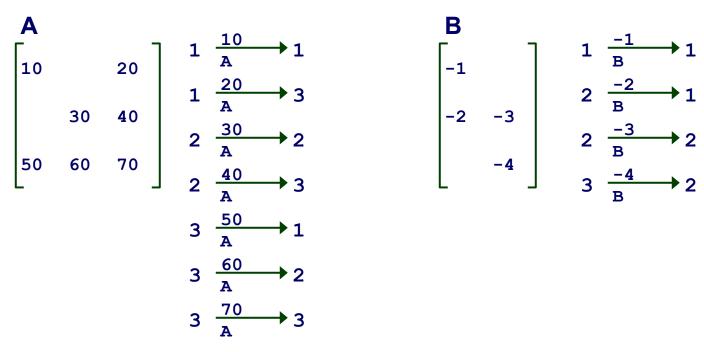
A B C
$$\begin{bmatrix} 10 & 20 \\ 30 & 40 \\ 50 & 60 & 70 \end{bmatrix}$$
 X $\begin{bmatrix} -1 \\ -2 & -3 \\ & -4 \end{bmatrix}$ = $\begin{bmatrix} -10 & -80 \\ -60 & -250 \\ -170 & -460 \end{bmatrix}$

- Task: Compute product C = A·B
- Assume most matrix entries are 0

Motivation

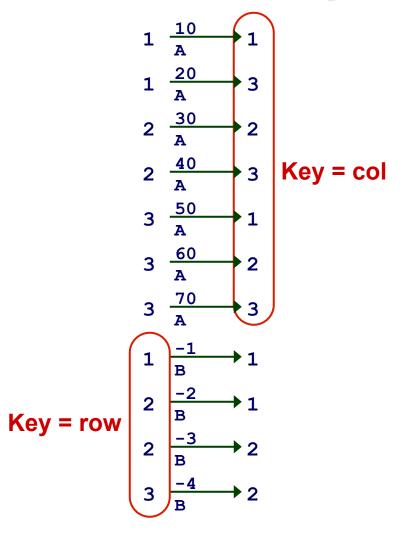
- Core problem in scientific computing
- Challenging for parallel execution
- **Demonstrate expressiveness of Map/Reduce**

Computing Sparse Matrix Product



- Represent matrix as list of nonzero entries ⟨row, col, value, matrixID⟩
- Strategy
 - Phase 1: Compute all products a_{i,k} · b_{k,j}
 - Phase 2: Sum products for each entry i,j
 - Each phase involves a Map/Reduce

Phase 1 Map of Matrix Multiply



Key = 1
$$1 \xrightarrow{10}_{A} 1$$

$$3 \xrightarrow{50}_{A} 1$$

$$1 \xrightarrow{-1}_{B} 1$$

Key = 3
$$1 \xrightarrow{20} 3$$

$$2 \xrightarrow{40} 3$$

$$3 \xrightarrow{70} 3$$

■ Group values a_{i,k} and b_{k,i} according to key k

Phase 1 "Reduce" of Matrix Multiply

Key = 1

1
$$\xrightarrow{10}$$
 1

3 $\xrightarrow{50}$ 1

X 1 $\xrightarrow{-1}$ B 1

1
$$\xrightarrow{20}$$
 3
2 $\xrightarrow{40}$ 3 \times 3 $\xrightarrow{-4}$ 2
3 $\xrightarrow{70}$ 3

$$1 \xrightarrow{-10} 1$$

$$3 \xrightarrow{-50} 1$$

$$2 \xrightarrow{-60} 1$$

$$2 \xrightarrow{-90} 2$$

$$3 \xrightarrow{-120} 1$$

$$3 \xrightarrow{-120} 1$$

$$3 \xrightarrow{-180} 2$$

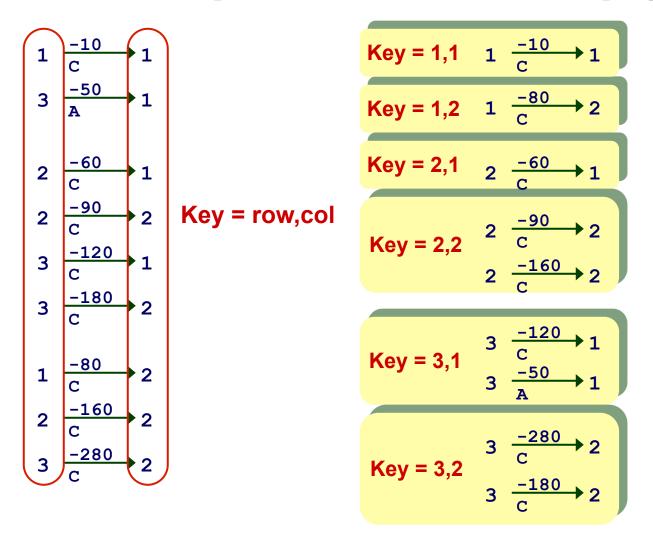
$$1 \xrightarrow{-80} 2$$

$$2 \xrightarrow{-160} 2$$

$$3 \xrightarrow{-280} 2$$

■ Generate all products a_{i,k} · b_{k,i}

Phase 2 Map of Matrix Multiply



■ Group products $a_{i,k} \cdot b_{k,j}$ with matching values of i and j

Phase 2 Reduce of Matrix Multiply

Key = 1,1 1
$$\frac{-10}{C}$$
 1

Key = 1,2 1
$$\xrightarrow{-80}$$
 2

Key = 2,1
$$_{2} \xrightarrow{-60}_{C}$$
 1

Key = 2,2
$$2 \xrightarrow{-90} 2$$
 $2 \xrightarrow{-160} 2$

Key = 3,1
$$3 \xrightarrow{\frac{-120}{C}} 1$$
 $3 \xrightarrow{\frac{-50}{A}} 1$

Key = 3,2
$$3 \xrightarrow{\frac{-280}{C}} 2$$

$$3 \xrightarrow{\frac{-180}{C}} 2$$

$$1 \xrightarrow{-10} 1$$

$$1 \xrightarrow{-80} 2$$

$$2 \xrightarrow{-60} 1$$

$$2 \xrightarrow{-250} 2$$

$$3 \xrightarrow{-170} 1$$

$$3 \xrightarrow{-460} 2$$

Sum products to get final entries

Matrix Multiply Phase 1 Mapper

```
public class P1Mapper extends MapReduceBase implements Mapper {
    public void map (WritableComparable key, Writable values,
                   OutputCollector output, Reporter reporter) throws
IOException {
       try {
           GraphEdge e = new GraphEdge(values.toString());
           IntWritable k;
           if (e.tag.equals("A"))
               k = new IntWritable(e.toNode);
           else
               k = new IntWritable(e.fromNode);
           output.collect(k, new Text(e.toString()));
       } catch (BadGraphException e) {}
```

Matrix Multiply Phase 1 Reducer

```
public class P1Reducer extends MapReduceBase implements Reducer {
       public void reduce (WritableComparable key, Iterator values,
                      OutputCollector output, Reporter reporter)
                       throws IOException
    {
       Text outv = new Text(""); // Don't really need output values
       /* First split edges into A and B categories */
       LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();
       LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
       while(values.hasNext()) {
               try {
                   GraphEdge e =
                      new GraphEdge(values.next().toString());
                   if (e.tag.equals("A")) {
                       alist.add(e);
                   } else {
                      blist.add(e);
               } catch (BadGraphException e) {}
       // Continued
```

MM Phase 1 Reducer (cont.)

```
// Continuation
Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while(aset.hasNext()) {
   GraphEdge aedge = aset.next();
   // For each outgoing edge
   Iterator<GraphEdge> bset = blist.iterator();
   while (bset.hasNext()) {
       GraphEdge bedge = bset.next();
       GraphEdge newe = aedge.contractProd(bedge);
       // Null would indicate invalid contraction
       if (newe != null) {
           Text outk = new Text(newe.toString());
           output.collect(outk, outv);
```

Matrix Multiply Phase 2 Mapper

Matrix Multiply Phase 2 Reducer

```
public class P2Reducer extends MapReduceBase implements Reducer {
       public void reduce (WritableComparable key, Iterator values,
                          OutputCollector output, Reporter reporter)
                              throws IOException
       GraphEdge efinal = null;
       while (efinal == null && values.hasNext()) {
           try {
               efinal = new GraphEdge(values.next().toString());
           } catch (BadGraphException e) {}
       if (efinal != null) {
           while(values.hasNext()) {
               try {
                   GraphEdge eother =
                      new GraphEdge(values.next().toString());
                   efinal.weight += eother.weight;
               } catch (BadGraphException e) {}
           if (efinal.weight != 0)
               output.collect(new Text(efinal.toString()),
                      new Text(""));
```

Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication Primitive

■ Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems

- Shortest path in graph
- Database join

Many Performance Considerations

- Kiefer, Volk, Lehner, TU Dresden
- Should do systematic comparison to other sparse matrix implementations

MapReduce Implementation

Built on Top of Parallel File System

- Google: GFS, Hadoop: HDFS
- Provides global naming
- Reliability via replication (typically 3 copies)

Breaks work into tasks

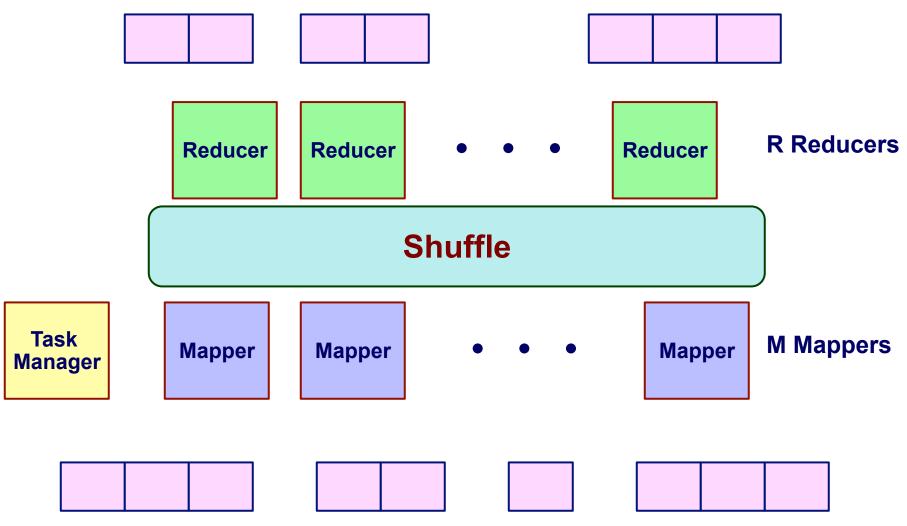
- Master schedules tasks on workers dynamically
- Typically #tasks >> #processors

Net Effect

- Input: Set of files in reliable file system
- Output: Set of files in reliable file system

MapReduce Execution

R Output Files



Input Files (Partitioned into Blocks)

Mapping

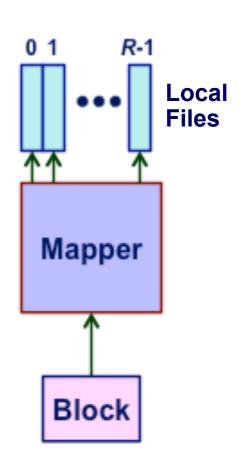
$$K \longrightarrow h \longrightarrow h(K) \in \{0, ..., R-1\}$$

Hash Function h

Maps each key K to integer i such that 0 ≤ i < R</p>

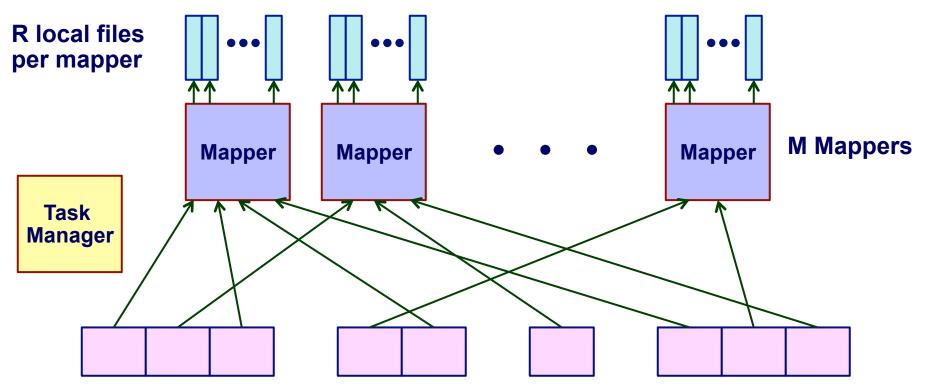
Mapper Operation

- Reads input file blocks
- Generates pairs ⟨K, V⟩
- Writes to local file *h(K)*



Mapping

- Dynamically map input file blocks onto mappers
- Each generates key/value pairs from its blocks
- Each writes R files on local file system

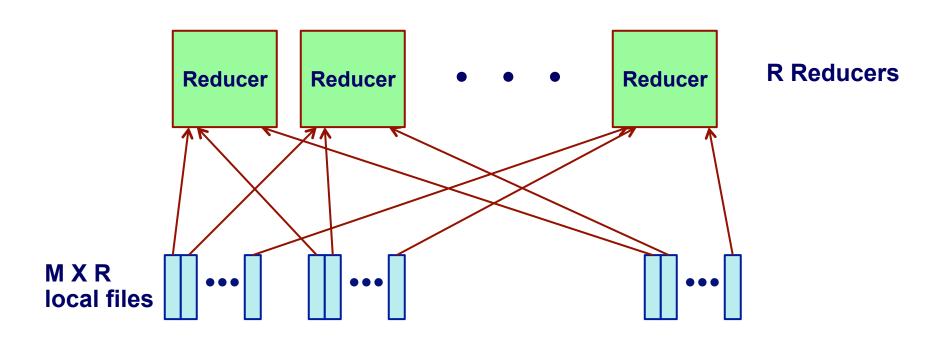


Input Files (Partitioned into Blocks)

Shuffling

Each Reducer:

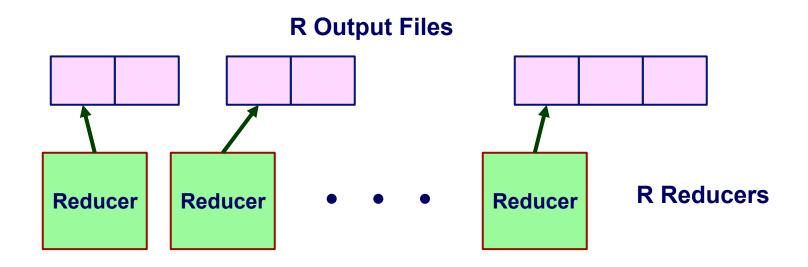
- Handles 1/R of the possible key values
- **Fetches its file from each of M mappers**
- Sorts all of its entries to group values by keys



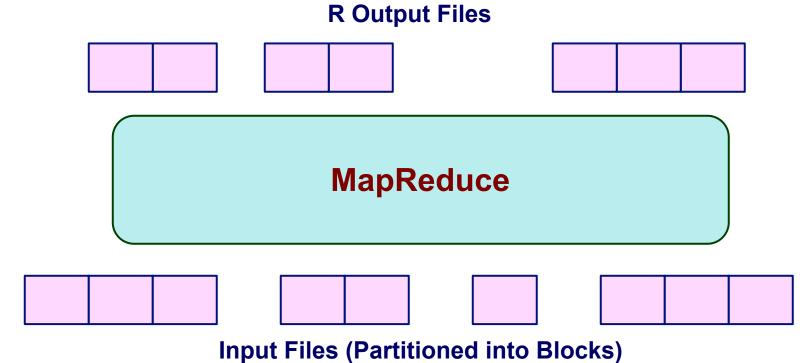
Reducing

Each Reducer:

- Executes reducer function for each key
- Writes output values to parallel file system



MapReduce Effect

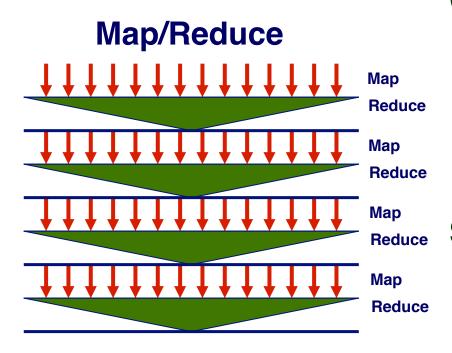


MapReduce Step

- Reads set of files from file system
- Generates new set of files

Can iterate to do more complex processing

Map/Reduce Operation



Characteristics

- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Use disk storage to hold intermediate results

Strengths

- Great flexibility in placement, scheduling, and load balancing
- Can access large data sets

Weaknesses

- Higher overhead
- Lower raw performance

Example Parameters

Sort Benchmark

- 10¹⁰ 100-byte records
- Partition into M = 15,000 64MB pieces
 - Key = value
 - Partition according to most significant bytes
- Sort locally with R = 4,000 reducers

Machine

- 1800 2Ghz Xeons
- Each with 2 160GB IDE disks
- Gigabit ethernet
- 891 seconds total

Interesting Features

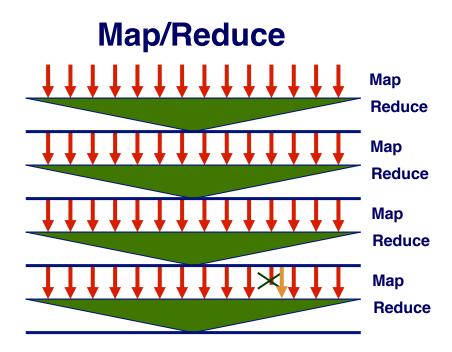
Fault Tolerance

- Assume reliable file system
- Detect failed worker
 - Heartbeat mechanism
- Reschedule failed task

Stragglers

- Tasks that take long time to execute
- Might be bug, flaky hardware, or poor partitioning
- When done with most tasks, reschedule any remaining executing tasks
 - Keep track of redundant executions
 - Significantly reduces overall run time

Map/Reduce Fault Tolerance



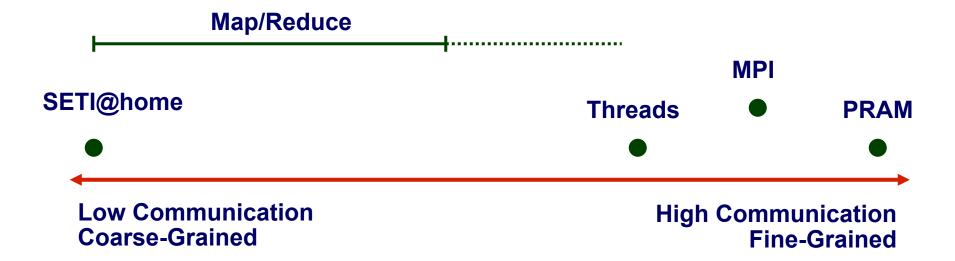
Data Integrity

- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

Recovering from Failure

- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy

Exploring Parallel Computation Models



Map/Reduce Provides Coarse-Grained Parallelism

- Computation done by independent processes
- File-based communication

Observations

- Relatively "natural" programming model
- Research issue to explore full potential and limits

Beyond Map/Reduce

Typical Map/Reduce Applications

- Sequence of steps, each requiring map & reduce
- Series of data transformations
- Iterating until reach convergence

Strengths of Map/Reduce

- User writes simple functions, system manages complexities of mapping, synchronization, fault tolerance
- Very general
- Good for large-scale data analysis

Limitations

- No locality of data or activity
- Each map/reduce step must complete before next begins

Generalizing Map/Reduce

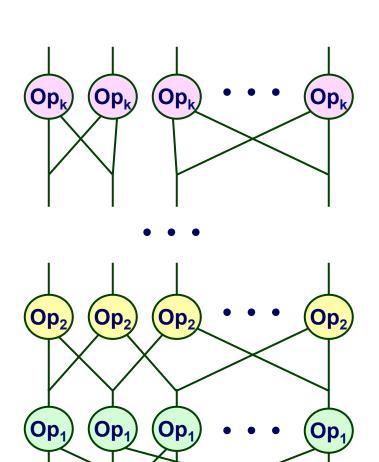
Microsoft Dryad Project

Computational Model

- Acyclic graph of operators
 - But expressed as textual program
- Each takes collection of objects and produces objects
 - Purely functional model

Implementation Concepts

- Objects stored in files or memory
- Any object may be lost; any operator may fail
- Replicate & recompute for fault tolerance
- Dynamic scheduling
- # Operators >> # Processors



 \boldsymbol{X}_{n}

 X_1

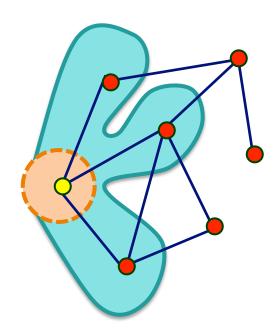
 X_2

CMU GraphLab

- Carlos Guestrin, et al.
- Graph algorithms used in machine learning

View Computation as Localized Updates on Graph

- New value depends on own value + those of neighbors
- Update repeatedly until converge

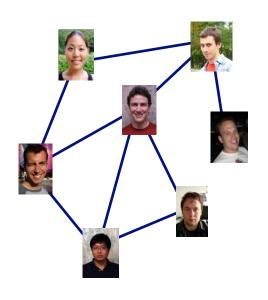


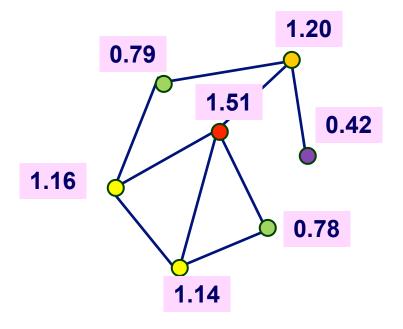
Machine Learning Example

PageRank Computation

■ Larry Page & Sergey Brinn, 1998

Rank "Importance" of Web Pages





PageRank Computation

Initially

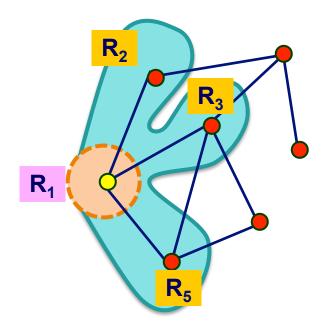
Assign weight 1.0 to each page

Iteratively

Select arbitrary node and update its value

Convergence

Results unique, regardless of selection ordering



$$R_1 \leftarrow 0.1 + 0.9 * (\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5)$$

PageRank with Map/Reduce

$$R_1 \leftarrow 0.1 + 0.9 * (\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5)$$

Each Iteration: Update all nodes

- Map: Generate values to pass along each edge
 - Key value 1: $(1, \frac{1}{2} R_2)$ $(1, \frac{1}{4} R_3)$ $(1, \frac{1}{3} R_5)$
 - Similar for all other keys
- Reduce: Combine edge values to get new rank
 - $R_1 \leftarrow 0.1 + 0.9 * (\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5)$
 - Similar for all other nodes

Performance

- Very slow!
- Altavista Webgraph 2002
 - 1.4B vertices, 6.7B edges

H	a	d	0	0	p

800 cores

9000s

PageRank with GraphLab

Operation

- Graph partitioned across multiple processors
 - Each doing updates to its portion of graph
 - Exploits locality
 - Greater asynchrony
 - Only iterate over portions of graph where values are changing

Performance

- Altavista Webgraph 2002
 - 1.4B vertices, 6.7B edges

Hadoop	800 cores	9000s
Prototype GraphLab2	512 cores	431s

Conclusions

Distributed Systems Concepts Lead to Scalable Machines

- Loosely coupled execution model
- Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use

- Hadoop makes it widely available
- Great for some applications, good enough for many others

Lots of Work to be Done

- Richer set of programming models and implementations
- Expanding range of applicability
 - Problems that are data and compute intensive
 - The future of supercomputing?