
Lecture 17:
Virtual Machines

CSE 120: Principles of Operating Systems
Alex C. Snoeren

HW 4 Due NOW

Virtual Machine Monitors
! Virtual Machine Monitors (VMMs) are everywhere

u Industry commitment
» Software: VMware, Xen, Microsoft Virtual PC
» Hardware: Intel VT, AMD-V

" If Intel and AMD add it to their chips, you know it’s serious…
u Academia: lots of VMM-based projects and papers

! An old idea, actually: developed by IBM in 60s and 70s
! Today

u What is it, what problems have to be solved, how to solve them
u Survey some virtualization systems
u Briefly outline cool things you can do with virtualization

CSE 120 – Lecture 17: Virtual Machines 2

What is a VMM?
! We have seen that an OS already virtualizes

u Syscalls, processes, virtual memory, file system, sockets, etc.
u Applications program to this interface

! A VMM virtualizes an entire physical machine
u Interface supported is the hardware

» OS defines a higher-level interface
u VMM provides the illusion that software has full control over the

hardware (of course, VMM is in control)
u VMM “applications” run in virtual machines (c.f., OS processes)

! Implications
u You can boot an operating system in a virtual machine
u Run multiple instances of an OS on same physical machine
u Run different OSes simultaneously on the same machine

» Linux on Windows, Windows on Mac, etc.

CSE 120 – Lecture 17: Virtual Machines 3

Why?
! Resource utilization

u Machines today are powerful, want to multiplex their hardware
» e.g., ISP hosting can divvy up a physical machine to customers

u Can migrate VMs from one machine to another without shutdown
! Software use and development

u Can run multiple OSes simultaneously
» No need to dual boot

u Can do system (e.g., OS) development at user-level
! Many other cool applications

u Debugging, emulation, security, speculation, fault tolerance…
! Common theme is manipulating applications/services at

the granularity of a machine
u Specific version of OS, libraries, applications, etc., as package

CSE 120 – Lecture 17: Virtual Machines 4

! Fidelity
u OSes and applications work the same without modification

» (although we may modify the OS a bit)
! Isolation

u VMM protects resources and VMs from each other
! Performance

u VMM is another layer of software…and therefore overhead
» As with OS, want to minimize this overhead

u VMware:
» CPU-intensive apps: 2-10% overhead
» I/O-intensive apps: 25-60% overhead

CSE 120 – Lecture 17: Virtual Machines 5

Rough VMM Model
! VMM runs with privilege

u OS in VM runs at “lesser” privilege (think user-level)
u VMM multiplexes resources among VMs

! Want to run OS code in a VM directly on CPU
u Think in terms of making the OS a user-level process
u What OS code can run directly, what will cause problems?

! Ideally, want privileged instructions to trap
u Exception vectors to VMM, it emulates operation, returns
u Nothing modified, running unprivileged is transparant
u Known as trap-and-emulate

! Unfortunately on architectures like x86, not so easy

CSE 120 – Lecture 17: Virtual Machines 6

Virtualizing the x86
! Ease of virtualization influenced by the architecture

u x86 is perhaps the last architecture you would choose
u But it’s what everyone uses, so…that’s what we deal with

! Issues
u Unvirtualizable events

» popf does not trap when it cannot modify system flags
u Hardware-managed TLB

» VMM cannot easily interpose on a TLB miss (more in a bit)
u Untagged TLB

» Have to flush on context switches (just a performance issue)
! Why Intel and AMD have added virtualization support

CSE 120 – Lecture 17: Virtual Machines 7

Example architectures
! VMware ESX server uses hypervisor model

u VMM runs at privilege,VMs run unprivileged
u VMM provides hardware virtualization itself

! VMware workstation uses hosted model
u VMM runs unprivileged,

installed on base OS
u Relies upon base OS

for device functionality

CSE 120 – Lecture 17: Virtual Machines 8

! Exactly what you would expect
u CPU
u Events (exceptions and interrupts)
u Memory
u I/O devices

! Isn’t this just duplicating OS functionality in a VMM?
u Yes and no
u Approaches will be similar to what we do with OSes

» Simpler in functionality, though (VMM much smaller than OS)
u But implements a different abstraction

» Hardware interface vs. OS interface

CSE 120 – Lecture 17: Virtual Machines 9

Virtualizing Privileged Insts
! OSes can no longer successfully execute privileged

instructions
u Virtual memory registers, interrupts, I/O, halt, etc.

! For those instructions that cause an exception
u Trap to VMM, take care of business, return to OS in VM

! For those that do not…
u VMware uses software virtualization
u Dynamic binary rewriting translates code executed in VM

» Rewrite privileged instructions with emulation code (may trap)
u CPU only executes translated code
u Incurs overhead, but can be well-tuned (small % hit)

CSE 120 – Lecture 17: Virtual Machines 10

Virtualizing the CPU
! VMM needs to multiplex VMs on CPU

! How? Just as you would expect
u Timeslice the VMs
u Each VM will timeslice its OS/applications during its quantum

! Typically relatively simple scheduler
u Round robin, work-conserving (give unused quantum to other

VMs)

CSE 120 – Lecture 17: Virtual Machines 11

Virtualizing Events & I/O
! VMM receives interrupts, exceptions

u Needs to vector to appropriate VM
u Craft appropriate handler invocation, emulate event registers

! OSes can no longer interact directly with I/O devices
u VMWare Workstation: generic devices only (hosted)

» E.g., AMD Lance chipset/PCNet Ethernet device
» Load driver into OS in VM, OS uses it normally
» Driver knows about VMM, cooperates to pass the buck to a real

device driver (e.g., on underlying host OS)
u VMware ESX Server: drivers run in VMM (hypervisor)

CSE 120 – Lecture 17: Virtual Machines 12

Virtualizing Memory
! OSes assume they have full control over memory

u Managing it: OS assumes it owns it all
u Mapping it: OS assumes it can map any virtual page to any

physical page
! But VMM partitions memory among VMs

u VMM needs to assign hardware pages to VMs
u VMM needs to control mappings for isolation

» Cannot allow an OS to map a virtual page to any hardware page
» OS can only map to a hardware page given to it by the VMM

! Hardware-managed TLBs make this difficult
u When the TLB misses, the hardware automatically walks the

page tables in memory
u As a result, VMM needs to control access by OS to page tables

CSE 120 – Lecture 17: Virtual Machines 14

Shadow Page Tables
! Three abstractions of memory

u Machine: actual hardware memory
» 2 GB of DRAM

u Physical: abstraction of hardware memory managed by OS
» If a VMM allocates 512 MB to a VM, the OS thinks the computer

has 512 MB of contiguous physical memory
» (Underlying machine memory may be discontiguous)

u Virtual: virtual address spaces you know and love
» Standard 232 address space

! In each VM, OS creates and manages page tables for
its virtual address spaces without modification

u But these page tables are not used by the MMU hardware

CSE 120 – Lecture 17: Virtual Machines 15

Shadow Page Tables (2)
! VMM creates and manages page tables that map

virtual pages directly to machine pages
u These tables are loaded into the MMU on a context switch
u VMM page tables are the shadow page tables

! VMM needs to keep its V!M tables consistent with
changes made by OS to its V!P tables

u VMM maps OS page tables as read only
u When OS writes to page tables, trap to VMM
u VMM applies write to shadow table and OS table, returns
u Also known as memory tracing
u Again, more overhead…

CSE 120 – Lecture 17: Virtual Machines 16

Shadow Page Tables (3)

CSE 120 – Lecture 17: Virtual Machines 17

Memory Allocation
! VMMs tend to have simple hardware memory

allocation policies
u Static: VM gets 512 MB of hardware memory for life
u No dynamic adjustment based on load

» OSes not designed to handle changes in physical memory…
u No swapping to disk

! More sophistication: Overcommit with balloon driver
u Balloon driver runs inside OS to consume hardware pages

» Steals from virtual memory and file buffer cache (balloon grows)
u Gives hardware pages to other VMs (those balloons shrink)

! Identify identical physical pages (e.g., all zeroes)
u Map those pages copy-on-write across VMs

CSE 120 – Lecture 17: Virtual Machines 18

Summary
! VMMs multiplex virtual machines on hardware

u Export the hardware interface
u Run OSes in VMs, apps in OSes unmodified
u Run different versions, kinds of OSes simultaneously

! Intel and AMD are adding virtualization support
u Goal is to fully virtualize architecture
u Transparent trap-and-emulate approach now feasible
u Echoes hardware support originally implemented by IBM

! Lesson: Never underestimate the power of indirection

CSE 120 – Lecture 17: Virtual Machines 19

CSE 120 – Lecture 17: Virtual Machines 20

Next Time
! We’ll review for the final
! Lab 3 due Tuesday night
! Final is Monday at 11:30, right here

Hardware Support
! Intel and AMD implement virtualization support in their

latest x86 chips (Intel VT-x, AMD-V)
! Direct execution model

u New execution mode: guest mode
» Direct execution of guest OS code, including privileged insts

u Virtual machine control block (VMCB)
» Controls what operations trap, records info to handle traps in VMM

u New instruction vmrun enters guest mode, runs VM code
u When VM traps, CPU executes new exit instruction
u Enters VMM, which emulates operation

CSE 120 – Lecture 17: Virtual Machines 21

Hardware Support (2)
! Intel and AMD working on further hardware support
! Memory

u Intel extended page tables (EPT), AMD nested page tables (NPT)
u Original page tables map virtual to (guest) physical pages

» Managed by OS in VM, backwards-compatible
» No need to trap to VMM when OS updates its page tables

u New tables map physical to machine pages
» Managed by VMM

u Tagged TLB w/ virtual process identifiers (VPIDs)
» Tag VMs with VPID, no need to flush TLB on VM/VMM switch

! I/O
u Constrain DMA operations only to page owned by specific VM
u AMD DEV: exclude pages (c.f. Xen memory paravirtualization)
u Intel VT-d: IOMMU – address translation support for DMA

CSE 120 – Lecture 17: Virtual Machines 22

Xen
! Uses “paravirtualization”

u Fancy word for “we have to modify & recompile the OS”
u Since you’re modifying the OS, make life easy for yourself
u Create a VMM interface to minimize porting and overhead

! Xen hypervisor (VMM) implements interface
u VMM runs at privilege, VMs (domains) run unprivileged
u Trusted OS (Linux) runs in own domain (Domain0)

» Use Domain0 to manage system, operate devices, etc.
! Most recent version of Xen does not require OS mods

u Because of Intel/AMD hardware support
! Commercialized via XenSource, but also open source

CSE 120 – Lecture 17: Virtual Machines 23

Xen Architecture

CSE 120 – Lecture 17: Virtual Machines 24

Xen Paravirtualization
! Xen uses the page tables that an OS creates

u These page tables are used directly by hardware MMU
! Xen validates all updates to page tables by OS

u OS can read page tables without modification
u But Xen needs to check all PTE writes to ensure that the

virtual-to-physical mapping is valid
» That the OS “owns” the physical page being used in the PTE

u Modify OS to hypervisor call into Xen when updating PTEs
» Batch updates to reduce overhead

! Page tables work the same as before, but OS is
constrained to only map to the physical pages it owns

! Works fine if you can modify the OS. If you can’t…

CSE 120 – Lecture 17: Virtual Machines 25

Cool VMM Tricks @ UCSD
! “Fork” VMs with copy-on-write memory (Michael Vrable)

u Scales the # of VMs on the same machine (100s)
u Michael modified Xen for a large-scale honeyfarm (Potemkin)

! Time dilation (Diwaker Gupta)
u VMM can control the rate of timer interrupts to OS
u Can change how OS interprets passage of time
u If VMM slows timer by 10x, then other hardware (CPU, disk,

network) appears 10x faster to OS and applications
u Can experiment with apps, protocols, and systems on future

hardware
» But, applications run 10x slower

CSE 120 – Lecture 17: Virtual Machines 26

Cool VMM Tricks @ UCSD
! Virtual clusters (Marvin McNett)

u We have a 200-node cluster for research
u Of course, everyone wants 200 machines for their own project

» But they are 99.9% idle over time
u Instead, give everyone a virtual cluster of 200 VMs
u Multiplex those VMs on physical hardware
u Migrate VMs as load varies over time

CSE 120 – Lecture 17: Virtual Machines 27

