Distributed Systems Within the Internet
Nov. 9, 2011

Topics

- Domain Name System
 - Finding IP address
- Content Delivery Networks
 - Caching content within the network
Domain Name System (DNS)

- Mapping from Host Names to IP Addresses

Distributed database

- Each site (university, large company, ISP, ...) maintains database with its own entries
- Provide server for others to query

Implemented at Application Layer

- Runs over UDP (normally) or TCP
Both generic (e.g., “.com”) and country (e.g., “.jp” domains)

- Top-level names managed by NIC
- Other name zones delegated to different entities
DNS Name Terminology

- **Node:** Any point in hierarchy
- **Zone:** A complete subtree
- **Name Servers:** Servers that can determine IP addresses within given zone
 - With help from other servers
Programmer’s View of DNS

- Conceptually, programmers can view the DNS database as a collection of millions of *host entry structures*:

```c
/* DNS host entry structure */
struct hostent {
    char    *h_name;       /* official domain name of host */
    char    **h_aliases;   /* null-terminated array of domain names */
    int     h_addrtype;    /* host address type (AF_INET) */
    int     h_length;      /* length of an address, in bytes */
    char    **h_addr_list; /* null-terminated array of in_addr structs */
};
```

- `in_addr` is a struct consisting of 4-byte IP address

Functions for retrieving host entries from DNS:

- `gethostbyname`: query key is a DNS domain name.
- `gethostbyaddr`: query key is an IP address.
Properties of DNS Host Entries

- Each host entry is an equivalence class of domain names and IP addresses.

Different kinds of mappings are possible:

- **Simple case:** 1-1 mapping between domain name and IP addr:
 - greatwhite.ics.cs.cmu.edu maps to 128.2.220.10

- **Multiple domain names mapped to the same IP address:**
 - eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

- **Multiple domain names mapped to multiple IP addresses:**
 - aol.com and www.aol.com map to multiple IP addrs.

- **Some valid domain names don’t map to any IP address:**
 - for example: ics.cs.cmu.edu
At each level of hierarchy, have group of servers that are authorized to handle that region of hierarchy

At bottom of hierarchy, have authority server for specific name
Nominal Root Name Servers

- 13 total

- Verisign, Dulles, VA
- Cogent, Herndon, VA (also Los Angeles)
- US Maryland College Park, MD
- US DoD Vienna, VA
- ARL Aberdeen, MD
- Verisign, (11 locations)
- NASA Mt View, CA
- Internet Software C. Palo Alto, CA (and 17 other locations)
- USC-ISI Marina del Rey, CA
- ICANN Los Angeles, CA
- RIPE London (also Amsterdam, Frankfurt)
- Autonomica, Stockholm (plus 3 other locations)
- WIDE Tokyo
Physical Root Name Servers

- Several root servers have multiple physical servers
- Packets routed to “nearest” server by “Anycast” protocol
DNS Records

Format: (class, name, value, type, TTL)

Database of Resource Records (RRs)

- Classes: IN = Internet
- Each class defines value associated with type

IN Class Types

- A Address
 - Name = hostname, Value = IP address
- NS Name Server
 - Name = domain (e.g., cs.cmu.edu)
 - Value = authoritative name server for this domain
- CNAME Canonical Name (alias)
 - Name = alias name
 - Value = canonical name
- MX Mail server
 - Value = mail server hostname
Getting DNS Information with `dig`

```
unix> dig greatwhite.ics.cs.cmu.edu

;; ANSWER SECTION:
greatwhite.ics.cs.cmu.edu. 2966 IN A 128.2.220.10

;; AUTHORITY SECTION:
cs.cmu.edu.      593  IN  NS  AC-DDNS-3.NET.cs.cmu.edu.
cs.cmu.edu.      593  IN  NS  AC-DDNS-1.NET.cs.cmu.edu.
cs.cmu.edu.      593  IN  NS  AC-DDNS-2.NET.cs.cmu.edu.
```

Perform DNS lookup as would for `gethostbyname`

- Lots of command-line options
Tracing Hierarchy (1)

Dig Program

- Use flags to find name server (NS)
- Disable recursion so that operates one step at a time

unix> dig +norecurse @a.root-servers.net NS greatwhite.ics.cs.cmu.edu

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
c.edu-servers.net. 172800 IN A 192.26.92.30
d.edu-servers.net. 172800 IN A 192.31.80.30
f.edu-servers.net. 172800 IN A 192.35.51.30
g.edu-servers.net. 172800 IN A 192.42.93.30
g.edu-servers.net. 172800 IN AAAA 2001:503:cc2c::2:36
l.edu-servers.net. 172800 IN A 192.41.162.30

- All .edu names handled by set of servers

IP v6 address
Tracing Hierarchy (2)

- 3 servers handle CMU names

```
unix> dig +norecurse @g.edu-servers.net NS greatwhite.ics.cs.cmu.edu

;; AUTHORITY SECTION:
cmu.edu.    172800 IN  NS  ny-server-03.net.cmu.edu.
cmu.edu.    172800 IN  NS  nsauth1.net.cmu.edu.
cmu.edu.    172800 IN  NS  nsauth2.net.cmu.edu.
```
Tracing Hierarchy (3 & 4)

- 3 servers handle CMU CS names

```
unix> dig +norecurse @nsauth1.net.cmu.edu NS greatwhite.ics.cs.cmu.edu

;; AUTHORITY SECTION:
<table>
<thead>
<tr>
<th>Domain</th>
<th>TTL</th>
<th>Type</th>
<th>Class</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs.cmu.edu.</td>
<td>600</td>
<td>IN</td>
<td>NS</td>
<td>AC-DDNS-2.NET.cs.cmu.edu.</td>
</tr>
<tr>
<td>cs.cmu.edu.</td>
<td>600</td>
<td>IN</td>
<td>NS</td>
<td>AC-DDNS-1.NET.cs.cmu.edu.</td>
</tr>
<tr>
<td>cs.cmu.edu.</td>
<td>600</td>
<td>IN</td>
<td>NS</td>
<td>AC-DDNS-3.NET.cs.cmu.edu.</td>
</tr>
</tbody>
</table>
```

- Server within CS is “start of authority” for this name

```
unix> dig +norecurse @AC_DDNS-2.NET.cs.cmu.edu NS greatwhite.ics.cs.cmu.edu

;; AUTHORITY SECTION:
<table>
<thead>
<tr>
<th>Domain</th>
<th>TTL</th>
<th>Type</th>
<th>Class</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs.cmu.edu.</td>
<td>300</td>
<td>IN</td>
<td>SOA</td>
<td>PLANISPHERE.FAC.cs.cmu.edu.</td>
</tr>
</tbody>
</table>
```
Recursive DNS Name Resolution

Nonlocal Lookup
- Recursively from root server downward
- Results passed up

Caching
- Results stored in caches along each hop
- Can shortcircuit lookup when cached entry present

Diagram:
- Root Server
 - .edu Server
 - edu Server
 - cmu Server
 - CMU CS Server
 - Local Server
 - Someplace
 - www Server
 - 208.216.181.15
 - ics Server
 - greatwhite Server
 - 128.2.220.10
Iterative DNS Name Resolution

Nonlocal Lookup
- At each step, server returns name of next server down
- Local server directly queries each successive server

Caching
- Local server builds up cache of intermediate translations
- Helps in resolving names xxx.cs.cmu.edu, yy.cmu.edu, and z.edu
Reverse DNS

Task
- Given IP address, find its name

Method
- Maintain separate hierarchy based on IP names
- Write 128.2.194.242 as 242.194.128.2.in-addr.arpa

Managing
- Authority manages IP addresses assigned to it
- E.g., CMU manages name space 128.2.in-addr.arpa
.arpa Name Server Hierarchy

- At each level of hierarchy, have group of servers that are authorized to handle that region of hierarchy

in-addr.arpa

a.root-servers.net • • • m.root-servers.net

128

chia.arin.net
(dill, henna, indigo, epazote, figwort, ginseng)

cucumber.srv.cs.cmu.edu,
t-ns1.net.cmu.edu
t-ns2.net.cmu.edu

194

mango.srv.cs.cmu.edu
(peach, banana, blueberry)

kittyhawk
128.2.194.242
Performance Issues

Challenge

- There’s way too much traffic on the Internet
- Popular sites (Google, Amazon, Facebook, …) get huge amounts of traffic
 - Could become “hot spot”
- It takes much longer to route packets around world than next door

Opportunities

- Services can be replicated
 - Multiple servers / data center
 - Multiple data centers around world
- Content can be cached

How Can this Work?

- Contrary to original Internet model: IP address designates unique host
Server Balancing

DNS Tricks

- Customize DNS response to location
 - Allows distribution by geography
- Return multiple host names / query
 - Client (could) choose one at random
- Update DNS entries with new servers
 - Rotate loading

Within Data Center

- Keep changing binding between IP address and host
Server Balancing Example

DNS Tricks

- Different responses to different servers, short TTL’s

unix1> dig www.google.com

;; ANSWER SECTION:
www.l.google.com. 81 IN A 72.14.204.104
www.l.google.com. 81 IN A 72.14.204.105
www.l.google.com. 81 IN A 72.14.204.147
www.l.google.com. 81 IN A 72.14.204.103

unix2> dig www.google.com

;; ANSWER SECTION:
www.l.google.com. 145 IN A 72.14.204.103
www.l.google.com. 145 IN A 72.14.204.104
www.l.google.com. 145 IN A 72.14.204.147
Typical Workload (Web Pages)

Multiple (typically small) objects per page

- Frame, body, ads, logos, ...

File sizes

- Heavy-tailed
 - Pareto distribution for tail
 - Lognormal for body of distribution

Embedded references

- Number of embedded objects also pareto
 \[\Pr(X>x) = (x/x_m)^{-k} \]

This plays havoc with performance. Why?

Solutions?

- Lots of small objects means & TCP
 - 3-way handshake
 - Lots of slow starts
 - Extra connection state
Content Distribution Networks (CDNs)

The content providers are the CDN customers.

Content replication

CDN company installs hundreds of CDN servers throughout Internet

- Close to users

CDN replicates its customers’ content in CDN servers. When provider updates content, CDN updates servers

CDNs:
- Akamai
- Major ISPs
Serving Through CDN

Requirement

- Route HTTP request to CDN node, rather than to original server

Methods

- CDN provider manipulates DNS tables

```
unix1> dig www.nfl.com

;; ANSWER SECTION:
www.nfl.com.edgesuite.net. 13778 IN      CNAME   a989.g.akamai.net.
a989.g.akamai.net.      20      IN      A       96.7.40.32
a989.g.akamai.net.      20      IN      A       96.7.40.33
```

- Rewrite HTML pages
 - ``

- With
 - ``
Caching Content in CDN

Simplistic
- Each CDN server caches content that flows through it

Better
- Create DHT among cluster of servers
- Origin of Chord led to founding of Akamai

Challenges
- Usual ones of staleness / consistency / replication
- Handled by TTLs

Effectiveness
- Can’t cache dynamic content
 - Responses to individual queries
 - But, even dynamic pages contain static links
- Great for streaming content
 - If multiple clients viewing same programs ~ simultaneously
Summary

DNS one of world’s largest distributed system
- Operation and authority delegated hierarchically
- Huge number of queries / second

Many Ways to Reduce / Balance Traffic
- Contrary to simple unique address / host model
- Time & location varying DNS entries
- CDNs