
18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1

Notes on Parallel File Systems: HDFS & GFS
15-440, Fall 2011
Carnegie Mellon University
Randal E. Bryant

References:

Ghemawat, Gobioff, Leung, "The Google File System," SOSP ’03

Shvachko, Kuang, Radia, Chansler, "The Hadoop Distributed File System"
MSST ’10

Chang, Dean, ... "BigTable: A Distributed Storage System for
Structured Data," OSDI ’06

Both GFS & HDFS are designed with similar goals:

* High throughput (latency less important)
 - Designed for batch processing jobs, e.g., MapReduce
* High capacity (large block size). Typical files > 1GB
* High scalability. Handle > 10^7 files
* Reliability through replication. Treat failure as normal.

Although GFS was developed first, HDFS is much simpler, and so will
describe it first.

HDFS

Based on "write once, read many" model:
 * Each file has single writer
 * File fully written and closed before any reader given access

Three components:
 * Clients.
 * NameNode. Single node containing all metadata about all files
 * DataNodes. Set of nodes that store actual file contents.

* File represented as sequence of blocks of fixed size (64 or 128 MB).
(Given byte offset for read, can immediately determine which block to
read.)

* Each block has unique block ID.
* Blocks are distributed across multiple DataNodes to enable parallel
 access.
* Blocks replicated (default 3X) to enable recovery when DataNode
 fails.
* When block created, NameNode decides placements
 - Default: two within single rack, third on a different rack
 - Access time / safety tradeoff.

NameNode
* Metadata: Information about file + plus set of block IDs +
 location of all replicas of all blocks
* Treats each FS operation as transaction
 - Maintains all information in memory
 - Logs to EditLog file
 - (Possibly outdated) backup copy stored on disk.
 - Can bring this copy up to date by replaying entries in EditLog
* Periodic checkpoint:
 - Apply transactions in editlog to disk image
 - Delete old parts of editlog
 - Can do in background while other updates occuring.
 - Does not store locations of replicas
* Tries to satisfy given read request with nearby DataNode
 - Same node / Same rack / Same system

DataNode
* Uses its local file system to store blocks
* Each block has two files
 - Actual data

18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 2

 - Metadata: checksum, generation stamp (to detect stale copies)
* Has no understanding of overall FS semantics
* Periodically (every hour) sends "block report" to NameNode, containing
 information about all replicas it holds.
* More often, sends heartbeat message to NameNode.

Client
* Buffers file as it is being written
* Create another block only when reach threshold
* Once time to push data to DataNodes, sets up pipeline from client,
 through each replica’s DataNode.
* File not committed until closed.
* Read: Retrieve list of blocks and where replicas are available
 - Subsequent reads involve direct interaction between client &
 datanodes.
* API exposes block replica locations
 - E.g., so that MapReduce can schedule a task near a copy of its data.

Interactions
* Client & DataNodes communicate to NameNode via RPC

Failures
* DataNode
 - Detected by NameNode when DataNode fails to send heartbeat
 messages
 - NameNode will decrement replica counts for each of its blocks
 - Will cause replication to commence
* NameNode
 - Point of high vulnerability
 - Requires manual intervention
 - 1-3 hours of effort.
 - Must rebuild memory image of metadata
 - Must build map of replicas from DataNodes

18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 3

Some statistics

Facebook, 2010 (Largest HDFS installaction at the time)

2000 machines, 22,400 cores
24 TB / machine, (21 PB total)

Writing 12TB / day
Reading 800TB / day
25K MapReduce jobs / day
65 Million HDFS files
30K simultaneous clients.

NameNode biggest impediment to scaling
* Performance bottleneck
* Holds all data structures in memory
* Must vulnerable point for reliability

HDFS reliability at Yahoo 2009

Created 329M blocks on 10 clusters with total of 20K data nodes

650 lost blocks:
* 533 Orphans from dead clients
* 98 where user had specified that should only have 1 replica.
* 19 lost due to software bugs (these are the more serious onces.)

HDFS availability

22 NameNode failures over 25 clusters in 18 mos.
Givens MTBF ˜= 600 days
1-3 hours to recover

Assuming 3 hours to recover, this gives 0.9998 availability.
(OK, but being out of commission for 3 hours is not good.

18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 4

GFS

Supports mutable files:
* Writes to arbitrary position
 - Special case: single writer append
* Record append
 - Atomic, concurrent append
 - Each record will appear in file at least once
 - May have duplicate records
 - File may also contain padding & record fragments
 - Useful for implementing log files
* Snapshots
 - Can quickly make copy of any file
 - Uses copy-on-write, similar to AFS

Same general idea as HDFS:

* Data divided into "chunks" of 64MB each
* Single master node, many chunk servers

Interesting features
* Clients get cached copy of metadata via leases (reduces load on
 master)
* Replicas migrate
* Log file from master replicated on remote machine
* Automatic failover of master
 ("10s of seconds")

Supporting arbitrary writes
* One replica designated "primary" via lease
* It determines the serialization of writes to a file

Supporting record appends
* If not enough room within chunk, then pad rest of chunk and retry
 with new chunk
* Possible to create duplicate or fragment of record if failure occurs
 while writing
* May have different versions on different replicas, but they will all
 have at least one copy of each record, in a unique order.

18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 5

Limitations of GFS

* Single master is serious performance bottleneck
 - MapReduce: Create many files at once
 - Have systems with multiple master nodes, all sharing set of
 chunk servers. Not a uniform name space.
* Large chunk size. Can’t afford to make smaller, since this would
 create more work for master.
 - Mitigated by move to BigTable
* Now used for tasks that require low latency:
 Gmail, etc.

18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 6

Building on GFS: BigTable

GFS originally designed to support high-throughput, batch operations,
e.g., MapReduce jobs

Later added BigTable. A "database"

* Information stored as records (Rows) each containing set of fields
 (Columns).
* Does not support relational operations
* Provides record-level atomicity

Implementation
* On top of GFS
* Basic data unit: "tablet"
 - 100MB - 200MB
 - Stores subset of rows in a table
 - Also used to build high-radix trees
* Multiple "tablet servers"
* Single master

* Tablet represented in different ways:
 - Base level via "string to string table" SSTable
 - Immutable key/value storage
 - Sorted by key
 - Updates accumulated in log file
 + Periodically perform "minor compaction"
 + Generate SSTable from current log file
 + Describes updates (including deletions) to set of existing
 SSTables
 + Periodically perform "major compaction"
 + Compress entire tablet into single SSTable
 - See that only uses immutable files (SSTable’s) and append-only
 files (log files)

