18- hdf s-gf s. t xt Thu COct 27 10:05:07 2011 1

Notes on Parallel File Systems: HDFS & GFS
15-440, Fall 2011

Carnegie Mellon University

Randal E. Bryant

References:
Ghemawat, Gobioff, Leung, "The Google File System," SOSP '03

Shvachko, Kuang, Radia, Chansler, "The Hadoop Distributed File System"
MSST '10

Chang, Dean, ... "BigTable: A Distributed Storage System for
Structured Data," OSDI '06

Both GFS & HDFS are designed with similar goals:

* High throughput (latency less important)
- Designed for batch processing jobs, e.g., MapReduce
* High capacity (large block size). Typical files > 1GB
* High scalability. Handle > 1077 files
* Reliability through replication. Treat failure as normal.

Although GFS was developed first, HDFS is much simpler, and so will
describe it first.

HDFS

Based on "write once, read many" model:
* Each file has single writer
* File fully written and closed before any reader given access

Three components:
* Clients.
* NameNode. Single node containing all metadata about all files
* DataNodes. Set of nodes that store actual file contents.

* File represented as sequence of blocks of fixed size (64 or 128 MB).
(Given byte offset for read, can immediately determine which block to
read.)

* Each block has unique block ID.

* Blocks are distributed across multiple DataNodes to enable parallel
access.

* Blocks replicated (default 3X) to enable recovery when DataNode
fails.

* When block created, NameNode decides placements
- Default: two within single rack, third on a different rack
- Access time / safety tradeoff.

NameNode
* Metadata: Information about file + plus set of block IDs +
location of all replicas of all blocks
* Treats each FS operation as transaction
- Maintains all information in memory
- Logs to EditLog file
- (Possibly outdated) backup copy stored on disk.
- Can bring this copy up to date by replaying entries in EditLog
* Periodic checkpoint:
- Apply transactions in editlog to disk image
- Delete old parts of editlog
- Can do in background while other updates occuring.
- Does not store locations of replicas
* Tries to satisfy given read request with nearby DataNode
- Same node / Same rack / Same system

DataNode
* Uses its local file system to store blocks
* Each block has two files

- Actual data



18- hdf s-gf s. t xt Thu COct 27 10:05:07 2011

- Metadata: checksum, generation stamp (to detect stale copies)

* Has no understanding of overall FS semantics

* Periodically (every hour) sends "block report" to NameNode, containing
information about all replicas it holds.

* More often, sends heartbeat message to NameNode.

Client

* Buffers file as it is being written

* Create another block only when reach threshold

* Once time to push data to DataNodes, sets up pipeline from client,
through each replica’s DataNode.

* File not committed until closed.

* Read: Retrieve list of blocks and where replicas are available
- Subsequent reads involve direct interaction between client &

datanodes.

* API exposes block replica locations

- E.g., so that MapReduce can schedule a task near a copy of its data.

Interactions
* Client & DataNodes communicate to NameNode via RPC

Failures
* DataNode
- Detected by NameNode when DataNode fails to send heartbeat
messages
- NameNode will decrement replica counts for each of its blocks
- Will cause replication to commence
* NameNode
- Point of high vulnerability
- Requires manual intervention
- 1-3 hours of effort.
- Must rebuild memory image of metadata
- Must build map of replicas from DataNodes



18- hdf s-gf s. t xt Thu COct 27 10:05:07 2011

Some statistics
Facebook, 2010 (Largest HDFS installaction at the time)

2000 machines, 22,400 cores
24 TB / machine, (21 PB total)

Writing 12TB / day
Reading 800TB / day

25K MapReduce jobs / day
65 Million HDFS files

30K simultaneous clients.

NameNode biggest impediment to scaling
* Performance bottleneck

* Holds all data structures in memory

* Must vulnerable point for reliability

HDFS reliability at Yahoo 2009
Created 329M blocks on 10 clusters with total of 20K data nodes

650 lost blocks:

* 533 Orphans from dead clients

* 98 where user had specified that should only have 1 replica.

* 19 lost due to software bugs (these are the more serious onces.)

HDFS availability

22 NameNode failures over 25 clusters in 18 mos.
Givens MTBF "= 600 days

1-3 hours to recover

Assuming 3 hours to recover, this gives 0.9998 availability.
(OK, but being out of commission for 3 hours is not good.



18- hdf s-gf s. t xt Thu COct 27 10:05:07 2011

GFS

Supports mutable files:
* Writes to arbitrary position
- Special case: single writer append
* Record append
- Atomic, concurrent append
- Each record will appear in file at least once
- May have duplicate records
- File may also contain padding & record fragments
- Useful for implementing log files
* Snapshots
- Can quickly make copy of any file
- Uses copy-on-write, similar to AFS

Same general idea as HDFS:

* Data divided into "chunks" of 64MB each
* Single master node, many chunk servers

Interesting features

* Clients get cached copy of metadata via leases (reduces load on
master)

* Replicas migrate

* Log file from master replicated on remote machine

* Automatic failover of master
("10s of seconds")

Supporting arbitrary writes
* One replica designated "primary" via lease
* |t determines the serialization of writes to a file

Supporting record appends

* If not enough room within chunk, then pad rest of chunk and retry
with new chunk

* Possible to create duplicate or fragment of record if failure occurs
while writing

* May have different versions on different replicas, but they will all
have at least one copy of each record, in a unique order.



18- hdf s-gf s. t xt Thu COct 27 10:05:07 2011

Limitations of GFS

* Single master is serious performance bottleneck
- MapReduce: Create many files at once
- Have systems with multiple master nodes, all sharing set of
chunk servers. Not a uniform name space.
* Large chunk size. Can't afford to make smaller, since this would
create more work for master.
- Mitigated by move to BigTable
* Now used for tasks that require low latency:
Gmail, etc.



18- hdf s-gf s. t xt Thu COct 27 10:05:07 2011

Building on GFS: BigTable

GFS originally designed to support high-throughput, batch operations,
e.g., MapReduce jobs

Later added BigTable. A "database"

* Information stored as records (Rows) each containing set of fields
(Columns).

* Does not support relational operations

* Provides record-level atomicity

Implementation
* On top of GFS
* Basic data unit: "tablet"
- 100MB - 200MB
- Stores subset of rows in a table
- Also used to build high-radix trees
* Multiple "tablet servers"
* Single master

* Tablet represented in different ways:

- Base level via "string to string table" SSTable
- Immutable key/value storage
- Sorted by key

- Updates accumulated in log file
+ Periodically perform "minor compaction”
+ Generate SSTable from current log file
+ Describes updates (including deletions) to set of existing

SSTables

+ Periodically perform "major compaction”
+ Compress entire tablet into single SSTable

- See that only uses immutable files (SSTable’s) and append-only
files (log files)



