
– 1 –

MapReduce Programming
Oct 25, 2011

Topics
 Large-scale computing

 Traditional high-performance computing (HPC)
 Cluster computing

 MapReduce
 Definition
 Examples

 Implementation
 Properties

15-440

– 2 –

Typical HPC Machine

Compute Nodes
 High end

processor(s)
 Lots of RAM

Network
 Specialized
 Very high

performance

Storage Server
 RAID-based disk

array

Network

Compute Nodes

Storage Server

CPU
Mem

CPU
Mem

CPU
Mem

• • •

• • •

– 3 –

HPC Machine Example

Jaguar Supercomputer
 3rd fastest in world

Compute Nodes
 18,688 nodes in largest partition
 2X 2.6Ghz 6-core AMD Opteron
 16GB memory
 Total: 2.3 petaflop / 300 TB memory

Network
 3D torus

 Each node connected to 6 neighbors via 6.0 GB/s links

Storage Server
 10PB RAID-based disk array

– 4 –

HPC Programming Model

 Programs described at very low level
 Specify detailed control of processing & communications

 Rely on small number of software packages
 Written by specialists
 Limits classes of problems & solution methods

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs

– 5 –

Bulk Synchronous Programming

Solving Problem Over Grid
 E.g., finite-element

computation

Partition into Regions
 p regions for p processors

Map Region per Processor
 Local computation sequential
 Periodically communicate

boundary values with
neighbors

– 6 –

Typical HPC Operation
Characteristics

 Long-lived processes
 Make use of spatial locality
 Hold all program data in

memory (no disk access)
 High bandwidth

communication

Strengths
 High utilization of resources
 Effective for many scientific

applications

Weaknesses
 Requires careful tuning of

application to resources
 Intolerant of any variability

P1 P2 P3 P4 P5

Message Passing

– 7 –

HPC Fault Tolerance

Checkpoint
 Periodically store state of all

processes
 Significant I/O traffic

Restore
 When failure occurs
 Reset state to that of last

checkpoint
 All intervening computation

wasted

Performance Scaling
 Very sensitive to number of

failing components

P1 P2 P3 P4 P5

Checkpoint

Checkpoint

Restore

Wasted
Computation

– 8 –

Google Data Centers

Dalles, Oregon
 Hydroelectric power @ 2¢ /

KW Hr
 50 Megawatts
 Enough to power 60,000 homes

 Engineered for maximum
modularity & power efficiency

 Container: 1160 servers,
250KW

 Server: 2 disks, 2 processors

– 9 –

Typical Cluster Machine

Compute + Storage
Nodes
 Medium-

performance
processors

 Modest memory
 1-2 disks

Network
 Conventional

Ethernet switches
 10 Gb/s within rack
 100 Gb/s across

racks

Network

Compute + Storage Nodes

• • •CPU
Mem

CPU
Mem

CPU
Mem

– 10 –

Machines with Disks
Lots of storage for

cheap
 Seagate Barracuda
 2 TB @ $99

5¢ / GB
(vs. 40¢ in 2007)

Drawbacks
 Long and highly variable

delays
 Not very reliable

Not included in HPC
Nodes

– 11 –

Oceans of Data, Skinny Pipes

1 Terabyte
 Easy to store
 Hard to move

Disks MB / s Time
Seagate Barracuda 115 2.3 hours
Seagate Cheetah 125 2.2 hours

Networks MB / s Time
Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

PSC Teragrid
Connection

< 3,750 > 4.4 minutes

– 12 –

Ideal Cluster Programming Model

 Application programs written in terms of high-level operations on data
 Runtime system controls scheduling, load balancing, …

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

– 13 –

Map/Reduce Programming Model

 Map computation across many objects
 E.g., 1010 Internet web pages

 Aggregate results in many different ways
 System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004

– 14 –

Map/Reduce Example

 Create an word index of set of documents
 Map: generate 〈word, count〉 pairs for all words in document
 Reduce: sum word counts across documents

Come,
Dick

Come
and
see.

Come
and
see

Spot.

Come
and
see.

Come,
come.

M Extract

Word-Count
Pairs

〈dick, 1〉

〈see, 1〉

〈come, 1〉

〈and, 1〉

〈come, 1〉

〈come, 1〉

〈come, 1〉

M M M M

〈come, 2〉

〈see, 1〉

〈and, 1〉
〈and, 1〉

〈spot, 1〉

Sumdick
∑

1

and
∑

3

come
∑

6

see
∑

3

spot
∑

1

– 15 –

Getting Started
Goal

 Provide access to MapReduce framework

Software
 Hadoop Project

 Open source project providing file system and Map/Reduce
 Supported and used by Yahoo
 Rapidly expanding user/developer base
 Prototype on single machine, map onto cluster

– 16 –

Hadoop API

Requirements
 Programmer must supply Mapper & Reducer classes

Mapper
 Steps through file one line at a time
 Code generates sequence of <key, value>

 Call output.collect(key, value)

 Default types for keys & values are strings
 Lots of low-level machinery to convert to & from other data types
 But can use anything “writable”

Reducer
 Given key + iterator that generates sequence of values
 Generate one or more <key, value> pairs

 Call output.collect(key, value)

– 17 –

Hadoop Word Count Mapper
public class WordCountMapper extends MapReduceBase

implements Mapper {

private final static Text word = new Text();

private final static IntWritable count = new IntWritable(1);

public void map(WritableComparable key, Writable values,
OutputCollector output, Reporter reporter)

throws IOException {
/* Get line from file */
String line = values.toString();
/* Split into tokens */
StringTokenizer itr = new StringTokenizer(line.toLowerCase(),

" \t.!?:()[],'&-;|0123456789");
while(itr.hasMoreTokens()) {

word.set(itr.nextToken());
/* Emit <token,1> as key + value
output.collect(word, count);

}
}

}

– 18 –

Hadoop Word Count Reducer
public class WordCountReducer extends MapReduceBase

implements Reducer {

public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter)
throws IOException {

int cnt = 0;
while(values.hasNext()) {

IntWritable ival = (IntWritable) values.next();
cnt += ival.get();

}
output.collect(key, new IntWritable(cnt));

}

}

– 19 –

Map/Reduce Operation
Characteristics

 Computation broken into
many, short-lived tasks
 Mapping, reducing

 Use disk storage to hold
intermediate results

Strengths
 Great flexibility in placement,

scheduling, and load
balancing

 Can access large data sets

Weaknesses
 Higher overhead
 Lower raw performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce

– 20 –

Map/Reduce Fault Tolerance
Data Integrity

 Store multiple copies of each
file

 Including intermediate
results of each Map / Reduce
 Continuous checkpointing

Recovering from Failure
 Simply recompute lost result

 Localized effect

 Dynamic scheduler keeps all
processors busy

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce

– 21 –

Cluster Scalability Advantages

 Distributed system design principles lead to scalable design
 Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages
 Can use consumer-grade components

 maximizes cost-peformance

 Can have heterogenous nodes
 More efficient technology refresh

Operational Advantages
 Minimal staffing
 No downtime

– 22 –

Exploring Parallel Computation Models

Map/Reduce Provides Coarse-Grained Parallelism
 Computation done by independent processes
 File-based communication

Observations
 Relatively “natural” programming model
 Research issue to explore full potential and limits

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAMThreads

Map/Reduce

MPI

– 23 –

Example: Sparse Matrices with
Map/Reduce

 Task: Compute product C = A·B
 Assume most matrix entries are 0

Motivation
 Core problem in scientific computing
 Challenging for parallel execution
 Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
-10 -80

-60 -250

-170-460

C

X =

– 24 –

Computing Sparse Matrix Product

 Represent matrix as list of nonzero entries
〈row, col, value, matrixID〉

 Strategy
 Phase 1: Compute all products ai,k · bk,j

 Phase 2: Sum products for each entry i,j
 Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
1 110

A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

– 25 –

Phase 1 Map of Matrix Multiply

 Group values ai,k and bk,j according to key k

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = row

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = col

– 26 –

Phase 1 “Reduce” of Matrix Multiply

 Generate all products ai,k · bk,j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

X

X

X

– 27 –

Phase 2 Map of Matrix Multiply

 Group products ai,k · bk,j with matching values of i and j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = row,col

– 28 –

Phase 2 Reduce of Matrix Multiply

 Sum products to get final entries

1 1-10
C

2 1-60
C

2 2-250
C

3 1-170
C

1 2-80
C

3 2-460
C

-10 -80

-60 -250

-170-460

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

– 29 –

Matrix Multiply Phase 1 Mapper
public class P1Mapper extends MapReduceBase implements Mapper {

public void map(WritableComparable key, Writable values,
OutputCollector output, Reporter reporter) throws

IOException {
try {

GraphEdge e = new GraphEdge(values.toString());
IntWritable k;
if (e.tag.equals("A"))

k = new IntWritable(e.toNode);
else

k = new IntWritable(e.fromNode);
output.collect(k, new Text(e.toString()));

} catch (BadGraphException e) {}
}

}

– 30 –

Matrix Multiply Phase 1 Reducer
public class P1Reducer extends MapReduceBase implements Reducer {

public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter)
throws IOException

{
Text outv = new Text(""); // Don't really need output values
/* First split edges into A and B categories */
LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();

LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
while(values.hasNext()) {

try {
GraphEdge e =

new GraphEdge(values.next().toString());
if (e.tag.equals("A")) {

alist.add(e);
} else {

blist.add(e);
}

} catch (BadGraphException e) {}
}

// Continued

– 31 –

MM Phase 1 Reducer (cont.)
// Continuation

Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while(aset.hasNext()) {

GraphEdge aedge = aset.next();
// For each outgoing edge
Iterator<GraphEdge> bset = blist.iterator();
while (bset.hasNext()) {

GraphEdge bedge = bset.next();
GraphEdge newe = aedge.contractProd(bedge);
// Null would indicate invalid contraction
if (newe != null) {

Text outk = new Text(newe.toString());
output.collect(outk, outv);

}
}

}
}

}

– 32 –

Matrix Multiply Phase 2 Mapper
public class P2Mapper extends MapReduceBase implements Mapper {

public void map(WritableComparable key, Writable values,
OutputCollector output, Reporter reporter)

throws IOException {
String es = values.toString();
try {

GraphEdge e = new GraphEdge(es);
// Key based on head & tail nodes
String ks = e.fromNode + " " + e.toNode;
output.collect(new Text(ks), new Text(e.toString()));

} catch (BadGraphException e) {}

}
}

– 33 –

Matrix Multiply Phase 2 Reducer
public class P2Reducer extends MapReduceBase implements Reducer {

public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter)

throws IOException
{

GraphEdge efinal = null;
while (efinal == null && values.hasNext()) {

try {
efinal = new GraphEdge(values.next().toString());

} catch (BadGraphException e) {}
}
if (efinal != null) {

while(values.hasNext()) {
try {

GraphEdge eother =
new GraphEdge(values.next().toString());

efinal.weight += eother.weight;
} catch (BadGraphException e) {}

}
if (efinal.weight != 0)

output.collect(new Text(efinal.toString()),
new Text(""));

}
}

}

– 34 –

Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication
Primitive
 Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems
 Shortest path in graph
 Database join

Many Performance Considerations
 Kiefer, Volk, Lehner, TU Dresden
 Should do systematic comparison to other sparse matrix

implementations

– 35 –

MapReduce Implementation

Built on Top of Parallel File System
 Google: GFS, Hadoop: HDFS
 Provides global naming
 Reliability via replication (typically 3 copies)

Breaks work into tasks
 Master schedules tasks on workers dynamically
 Typically #tasks >> #processors

Net Effect
 Input: Set of files in reliable file system
 Output: Set of files in reliable file system
 Can write program as series of MapReduce steps

– 36 –

Mapping

Parameters
 M: Number of mappers

 Each gets ~1/M of the input data

 R: Number of reducers
 Each reducer i gets keys k such that hash(k) = i

Tasks
 Split input files into M pieces, 16—64 MB each
 Scheduler dynamically assigns worker for each “split”

Task operation
 Parse “split”
 Generate key, value pairs & write R different local disk files

 Based on hash of keys

 Notify master of worker of output file locations

– 37 –

Reducing

Shuffle
 Each reducer fetches its share of key, value pairs from each

mapper using RPC
 Sort data according to keys

 Use disk-based (“external”) sort if too much data for memory

Reduce Operation
 Step through key-value pairs in sorted order
 For each unique key, call reduce function for all values
 Append result to output file

Result
 R output files
 Typically supply to next round of MapReduce

– 38 –

Example Parameters

Sort Benchmark
 1010 100-byte records
 Partition into M = 15,000 64MB pieces

 Key = value
 Partition according to most significant bytes

 Sort locally with R = 4,000 reducers

Machine
 1800 2Ghz Xeons
 Each with 2 160GB IDE disks
 Gigabit ethernet
 891 seconds total

– 39 –

Interesting Features

Fault Tolerance
 Assume reliable file system
 Detect failed worker

 Heartbeat mechanism

 Rescheduled failed task

Stragglers
 Tasks that take long time to execute
 Might be bug, flaky hardware, or poor partitioning
 When done with most tasks, reschedule any remaining

executing tasks
 Keep track of redundant executions
 Significantly reduces overall run time

– 40 –

Generalizing Map/Reduce
 Microsoft Dryad Project

Computational Model
 Acyclic graph of operators

 But expressed as textual program

 Each takes collection of objects and
produces objects
 Purely functional model

Implementation Concepts
 Objects stored in files or memory
 Any object may be lost; any

operator may fail
 Replicate & recompute for fault

tolerance
 Dynamic scheduling

 # Operators >> # Processors
x1 x2 x3 xn

• • •

Op2 Op2 Op2 Op2• • •

• • •

Opk Opk Opk Opk• • •

Op1 Op1 Op1 Op1

– 41 –

Conclusions

Distributed Systems Concepts Lead to Scalable
Machines
 Loosely coupled execution model
 Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use
 Hadoop makes it widely available
 Great for some applications, good enough for many others

Lots of Work to be Done
 Richer set of programming models and implementations
 Expanding range of applicability

 Problems that are data and compute intensive
 The future of supercomputing?

	MapReduce Programming�Oct 25, 2011
	Typical HPC Machine
	HPC Machine Example
	HPC Programming Model
	Bulk Synchronous Programming
	Typical HPC Operation
	HPC Fault Tolerance
	Google Data Centers
	Typical Cluster Machine
	Machines with Disks
	Oceans of Data, Skinny Pipes
	Ideal Cluster Programming Model
	Map/Reduce Programming Model
	Map/Reduce Example
	Getting Started
	Hadoop API
	Hadoop Word Count Mapper
	Hadoop Word Count Reducer
	Map/Reduce Operation
	Map/Reduce Fault Tolerance
	Cluster Scalability Advantages
	Exploring Parallel Computation Models
	Example: Sparse Matrices with Map/Reduce
	Computing Sparse Matrix Product
	Phase 1 Map of Matrix Multiply
	Phase 1 “Reduce” of Matrix Multiply
	Phase 2 Map of Matrix Multiply
	Phase 2 Reduce of Matrix Multiply
	Matrix Multiply Phase 1 Mapper
	Matrix Multiply Phase 1 Reducer
	MM Phase 1 Reducer (cont.)
	Matrix Multiply Phase 2 Mapper
	Matrix Multiply Phase 2 Reducer
	Lessons from Sparse Matrix Example
	MapReduce Implementation
	Mapping
	Reducing
	Example Parameters
	Interesting Features
	Generalizing Map/Reduce
	Conclusions

