15-440

MapReduce Programming Oct 25, 2011

Topics

- Large-scale computing
 - Traditional high-performance computing (HPC)
 - Cluster computing
- MapReduce
 - Definition
 - Examples
- Implementation
- Properties

Typical HPC Machine

Compute Nodes

- High end processor(s)
- Lots of RAM

Network

- Specialized
- Very high performance

Storage Server

RAID-based disk array

HPC Machine Example

Jaguar Supercomputer

■ 3rd fastest in world

Compute Nodes

- 18,688 nodes in largest partition
- 2X 2.6Ghz 6-core AMD Opteron
- 16GB memory
- Total: 2.3 petaflop / 300 TB memory

Network

- 3D torus
 - Each node connected to 6 neighbors via 6.0 GB/s links

Storage Server

■ 10PB RAID-based disk array

HPC Programming Model

- Programs described at very low level
 - Specify detailed control of processing & communications
- Rely on small number of software packages
 - Written by specialists
 - Limits classes of problems & solution methods

Bulk Synchronous Programming

Solving Problem Over Grid

■ E.g., finite-element computation

Partition into Regions

p regions for p processors

Map Region per Processor

- Local computation sequential
- Periodically communicate boundary values with neighbors

Typical HPC Operation

Message Passing

Characteristics

- Long-lived processes
- Make use of spatial locality
- Hold all program data in memory (no disk access)
- High bandwidth communication

Strengths

- High utilization of resources
- Effective for many scientific applications

Weaknesses

- Requires careful tuning of application to resources
- Intolerant of any variability

HPC Fault Tolerance

Checkpoint

- Periodically store state of all processes
- Significant I/O traffic

Restore

- When failure occurs
- Reset state to that of last checkpoint
- All intervening computation wasted

Performance Scaling

Very sensitive to number of failing components

Google Data Centers

- Hydroelectric power @ 2¢ / KW Hr
- 50 Megawatts
- Enough to power 60,000 homes

- Engineered for maximum modularity & power efficiency
- Container: 1160 servers, 250KW
- Server: 2 disks, 2 processors

Typical Cluster Machine

Compute + Storage Nodes

- Mediumperformance processors
- Modest memory
- 1-2 disks

Network

- ConventionalEthernet switches
 - 10 Gb/s within rack
 - 100 Gb/s across racks

Machines with Disks

Lots of storage for cheap

- Seagate Barracuda
- 2 TB @ \$99

5¢ / GB

(vs. 40¢ in 2007)

Drawbacks

- Long and highly variable delays
- Not very reliable

Not included in HPC **Nodes**

Seagate Barracuda LP 2 TB 5900RPM SATA 3 GB/s 32 MB Cache 3.5-Inch Internal Hard Drive ST32000542AS-Bare Drive

by Seagate

★★★★ ▼ (123 customer reviews) Like (23) | ✓

List Price: \$202.99

Price: \$99.45

You Save: \$103.54 (51%)

32 new from \$74.99 1 refurbished from \$99.00

Oceans of Data, Skinny Pipes

No more blaming connection speeds for your losses.

Verizon FiOS – the fastest Internet available.

Plans as low **\$39.99/month** (up to 5 Mbps).
Plus, order online & **get your first month FREE!**

Enter your home phone number below to check availability.

Don't have a Verizon phone number? Qualify your address.

1 Terabyte

- Easy to store
- Hard to move

Disks	MB/s	Time
Seagate Barracuda	115	2.3 hours
Seagate Cheetah	125	2.2 hours
Networks	MB/s	Time
Home Internet	< 0.625	> 18.5 days
Gigabit Ethernet	< 125	> 2.2 hours
PSC Teragrid Connection	< 3,750	> 4.4 minutes

Ideal Cluster Programming Model

- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing, ...

Map/Reduce Programming Model

- Map computation across many objects
 - E.g., 10¹⁰ Internet web pages
- Aggregate results in many different ways
- System deals with issues of resource allocation & reliability

Map/Reduce Example

Extract

- Create an word index of set of documents
- Map: generate (word, count) pairs for all words in document
- Reduce: sum word counts across documents

Getting Started

Goal

■ Provide access to MapReduce framework

Software

- Hadoop Project
 - Open source project providing file system and Map/Reduce
 - Supported and used by Yahoo
 - Rapidly expanding user/developer base
 - Prototype on single machine, map onto cluster

Hadoop API

Requirements

Programmer must supply Mapper & Reducer classes

Mapper

- Steps through file one line at a time
- Code generates sequence of <key, value>
 - Call output.collect(key, value)
- Default types for keys & values are strings
 - Lots of low-level machinery to convert to & from other data types
 - But can use anything "writable"

Reducer

- Given key + iterator that generates sequence of values
- Generate one or more <key, value> pairs
 - Call output.collect(key, value)

Hadoop Word Count Mapper

```
public class WordCountMapper extends MapReduceBase
       implements Mapper {
   private final static Text word = new Text();
   private final static IntWritable count = new IntWritable(1);
   public void map(WritableComparable key, Writable values,
                   OutputCollector output, Reporter reporter)
               throws IOException {
       /* Get line from file */
       String line = values.toString();
       /* Split into tokens */
       StringTokenizer itr = new StringTokenizer(line.toLowerCase(),
                                      " \t.!?:()[],'&-; |0123456789");
       while(itr.hasMoreTokens()) {
           word.set(itr.nextToken());
           /* Emit <token,1> as key + value
           output.collect(word, count);
```

Hadoop Word Count Reducer

```
public class WordCountReducer extends MapReduceBase
       implements Reducer {
       public void reduce(WritableComparable key, Iterator values,
                      OutputCollector output, Reporter reporter)
                      throws IOException {
           int cnt = 0:
           while(values.hasNext()) {
               IntWritable ival = (IntWritable) values.next();
               cnt += ival.get();
           output.collect(key, new IntWritable(cnt));
```

Map/Reduce Operation

Characteristics

- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Use disk storage to hold intermediate results

Strengths

- Great flexibility in placement, scheduling, and load balancing
- Can access large data sets

Weaknesses

- Higher overhead
- Lower raw performance

Map/Reduce Fault Tolerance

Data Integrity

- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

Recovering from Failure

- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy

Cluster Scalability Advantages

- Distributed system design principles lead to scalable design
- Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages

- Can use consumer-grade components
 - maximizes cost-peformance
- Can have heterogenous nodes
 - More efficient technology refresh

Operational Advantages

- Minimal staffing
- No downtime

Exploring Parallel Computation Models

Map/Reduce Provides Coarse-Grained Parallelism

- Computation done by independent processes
- File-based communication

Observations

- Relatively "natural" programming model
- Research issue to explore full potential and limits

Example: Sparse Matrices with Map/Reduce

- Task: Compute product C = A·B
- Assume most matrix entries are 0

Motivation

- Core problem in scientific computing
- Challenging for parallel execution
- **■** Demonstrate expressiveness of Map/Reduce

Computing Sparse Matrix Product

$$\begin{bmatrix} -1 \\ -2 & -3 \\ & -4 \end{bmatrix} \qquad \begin{array}{c} 1 & \frac{-1}{B} & 1 \\ 2 & \frac{-2}{B} & 1 \\ 2 & \frac{-3}{B} & 2 \\ 3 & \frac{-4}{B} & 2 \end{array}$$

- Represent matrix as list of nonzero entries ⟨row, col, value, matrixID⟩
- Strategy
 - Phase 1: Compute all products a_{i,k} · b_{k,i}
 - Phase 2: Sum products for each entry i,j
 - Each phase involves a Map/Reduce

Phase 1 Map of Matrix Multiply

Key = 1

1
$$\xrightarrow{10}$$
 1

3 $\xrightarrow{50}$ 1

1
$$\xrightarrow{20}$$
 3

2 $\xrightarrow{40}$ 3

3 $\xrightarrow{-4}$ 2

3 $\xrightarrow{70}$ 3

■ Group values a_{i,k} and b_{k,i} according to key k

Phase 1 "Reduce" of Matrix Multiply

Key = 1

1
$$\xrightarrow{10}$$
 1

3 $\xrightarrow{50}$ 1

X 1 $\xrightarrow{-1}$ B 1

1
$$\xrightarrow{20}$$
 3 \xrightarrow{A} 3

$$1 \xrightarrow{-10} 1$$

$$3 \xrightarrow{-50} 1$$

$$2 \xrightarrow{-60} 1$$

$$2 \xrightarrow{-90} 2$$

$$3 \xrightarrow{-120} 1$$

$$3 \xrightarrow{-180} 2$$

$$1 \xrightarrow{-80} 2$$

$$2 \xrightarrow{-160} 2$$

$$3 \xrightarrow{-280} 2$$

■ Generate all products a_{i,k} · b_{k,j}

Phase 2 Map of Matrix Multiply

■ Group products a_{i,k} · b_{k,j} with matching values of i and j

Phase 2 Reduce of Matrix Multiply

Key = 1,1 1
$$\xrightarrow{-10}$$
 1

Key = 1,2 1
$$\frac{-80}{C}$$
 2

Key = 2,1
$$_{2} \xrightarrow{-60}_{C}$$
 1

Key = 2,2
$$2 \xrightarrow{-90} 2$$
 $2 \xrightarrow{-160} 2$

Key = 3,1
$$3 \xrightarrow{-120} 1$$

$$3 \xrightarrow{-50} 1$$

Key = 3,2
$$3 \xrightarrow{\frac{-280}{C}} 2$$

$$3 \xrightarrow{\frac{-180}{C}} 2$$

$$1 \xrightarrow{-10} 1$$

$$1 \xrightarrow{-80} 2$$

$$2 \xrightarrow{-60} 1$$

$$2 \xrightarrow{-250} 2$$

$$3 \xrightarrow{-170} 1$$

$$3 \xrightarrow{-460} 2$$

Sum products to get final entries

Matrix Multiply Phase 1 Mapper

```
public class P1Mapper extends MapReduceBase implements Mapper {
   public void map(WritableComparable key, Writable values,
                   OutputCollector output, Reporter reporter) throws
IOException {
       try {
           GraphEdge e = new GraphEdge(values.toString());
           IntWritable k:
           if (e.tag.equals("A"))
               k = new IntWritable(e.toNode);
           else
               k = new IntWritable(e.fromNode);
           output.collect(k, new Text(e.toString()));
       } catch (BadGraphException e) {}
```

Matrix Multiply Phase 1 Reducer

```
public class P1Reducer extends MapReduceBase implements Reducer {
       public void reduce(WritableComparable key, Iterator values,
                      OutputCollector output, Reporter reporter)
                      throws IOException
       Text outv = new Text(""); // Don't really need output values
       /* First split edges into A and B categories */
       LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();
           LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
           while(values.hasNext()) {
               try {
                   GraphEdge e =
                      new GraphEdge(values.next().toString());
                   if (e.tag.equals("A")) {
                      alist.add(e);
                   } else {
                      blist.add(e);
               } catch (BadGraphException e) {}
       // Continued
```

MM Phase 1 Reducer (cont.)

```
// Continuation
Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while(aset.hasNext()) {
   GraphEdge aedge = aset.next();
   // For each outgoing edge
   Iterator<GraphEdge> bset = blist.iterator();
   while (bset.hasNext()) {
       GraphEdge bedge = bset.next();
       GraphEdge newe = aedge.contractProd(bedge);
       // Null would indicate invalid contraction
       if (newe != null) {
           Text outk = new Text(newe.toString());
           output.collect(outk, outv);
```

Matrix Multiply Phase 2 Mapper

```
public class P2Mapper extends MapReduceBase implements Mapper {
   public void map(WritableComparable key, Writable values,
                   OutputCollector output, Reporter reporter)
                      throws IOException {
       String es = values.toString();
       try {
           GraphEdge e = new GraphEdge(es);
           // Key based on head & tail nodes
           String ks = e.fromNode + " " + e.toNode;
           output.collect(new Text(ks), new Text(e.toString()));
       } catch (BadGraphException e) {}
```

Matrix Multiply Phase 2 Reducer

```
public class P2Reducer extends MapReduceBase implements Reducer {
       public void reduce(WritableComparable key, Iterator values,
                         OutputCollector output, Reporter reporter)
                              throws IOException
       GraphEdge efinal = null;
       while (efinal == null && values.hasNext()) {
           try {
               efinal = new GraphEdge(values.next().toString());
           } catch (BadGraphException e) {}
       if (efinal != null) {
           while(values.hasNext()) {
               try {
                   GraphEdge eother =
                      new GraphEdge(values.next().toString());
                   efinal.weight += eother.weight;
               } catch (BadGraphException e) {}
           if (efinal.weight != 0)
               output.collect(new Text(efinal.toString()),
                      new Text(""));
```

Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication Primitive

■ Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems

- Shortest path in graph
- Database join

Many Performance Considerations

- Kiefer, Volk, Lehner, TU Dresden
- Should do systematic comparison to other sparse matrix implementations

MapReduce Implementation

Built on Top of Parallel File System

- Google: GFS, Hadoop: HDFS
- Provides global naming
- Reliability via replication (typically 3 copies)

Breaks work into tasks

- Master schedules tasks on workers dynamically
- Typically #tasks >> #processors

Net Effect

- Input: Set of files in reliable file system
- Output: Set of files in reliable file system
- Can write program as series of MapReduce steps

Mapping

Parameters

- M: Number of mappers
 - Each gets ~1/M of the input data
- R: Number of reducers
 - Each reducer i gets keys k such that hash(k) = i

Tasks

- Split input files into M pieces, 16—64 MB each
- Scheduler dynamically assigns worker for each "split"

Task operation

- Parse "split"
- Generate key, value pairs & write R different local disk files
 - Based on hash of keys
- Notify master of worker of output file locations

Reducing

Shuffle

- Each reducer fetches its share of key, value pairs from each mapper using RPC
- Sort data according to keys
 - Use disk-based ("external") sort if too much data for memory

Reduce Operation

- Step through key-value pairs in sorted order
- For each unique key, call reduce function for all values
- Append result to output file

Result

- R output files
- Typically supply to next round of MapReduce

Example Parameters

Sort Benchmark

- 10¹⁰ 100-byte records
- Partition into M = 15,000 64MB pieces
 - Key = value
 - Partition according to most significant bytes
- Sort locally with R = 4,000 reducers

Machine

- 1800 2Ghz Xeons
- Each with 2 160GB IDE disks
- Gigabit ethernet
- 891 seconds total

Interesting Features

Fault Tolerance

- Assume reliable file system
- Detect failed worker
 - Heartbeat mechanism
- Rescheduled failed task

Stragglers

- Tasks that take long time to execute
- Might be bug, flaky hardware, or poor partitioning
- When done with most tasks, reschedule any remaining executing tasks
 - Keep track of redundant executions
 - Significantly reduces overall run time

Generalizing Map/Reduce

Microsoft Dryad Project

Computational Model

- Acyclic graph of operators
 - But expressed as textual program
- Each takes collection of objects and produces objects
 - Purely functional model

Implementation Concepts

- Objects stored in files or memory
- Any object may be lost; any operator may fail
- Replicate & recompute for fault tolerance
- Dynamic scheduling
 - # Operators >> # Processors

Op₁

 (Op_1)

 X_1

Conclusions

Distributed Systems Concepts Lead to Scalable Machines

- Loosely coupled execution model
- Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use

- Hadoop makes it widely available
- Great for some applications, good enough for many others

Lots of Work to be Done

- Richer set of programming models and implementations
- Expanding range of applicability
 - Problems that are data and compute intensive
 - The future of supercomputing?