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MapReduce Programming
Oct 25, 2011

Topics
 Large-scale computing

 Traditional high-performance computing (HPC)
 Cluster computing

 MapReduce
 Definition
 Examples

 Implementation
 Properties
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Typical HPC Machine

Compute Nodes
 High end 

processor(s)
 Lots of RAM

Network
 Specialized
 Very high 

performance

Storage Server
 RAID-based disk 

array

Network

Compute Nodes

Storage Server

CPU
Mem

CPU
Mem

CPU
Mem
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HPC Machine Example

Jaguar Supercomputer
 3rd fastest in world

Compute Nodes
 18,688 nodes in largest partition
 2X 2.6Ghz 6-core AMD Opteron
 16GB memory
 Total: 2.3 petaflop / 300 TB memory

Network
 3D torus

 Each node connected to 6 neighbors via 6.0 GB/s links

Storage Server
 10PB RAID-based disk array
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HPC Programming Model

 Programs described at very low level
 Specify detailed control of processing & communications

 Rely on small number of software packages
 Written by specialists
 Limits classes of problems & solution methods

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs
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Bulk Synchronous Programming

Solving Problem Over Grid
 E.g., finite-element 

computation

Partition into Regions
 p regions for p processors

Map Region per Processor
 Local computation sequential
 Periodically communicate 

boundary values with 
neighbors
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Typical HPC Operation
Characteristics

 Long-lived processes
 Make use of spatial locality
 Hold all program data in 

memory (no disk access)
 High bandwidth 

communication

Strengths
 High utilization of resources
 Effective for many scientific 

applications

Weaknesses
 Requires careful tuning of 

application to resources
 Intolerant of any variability

P1 P2 P3 P4 P5

Message Passing
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HPC Fault Tolerance

Checkpoint
 Periodically store state of all 

processes
 Significant I/O traffic

Restore
 When failure occurs
 Reset state to that of last 

checkpoint
 All intervening computation 

wasted

Performance Scaling
 Very sensitive to number of 

failing components

P1 P2 P3 P4 P5

Checkpoint

Checkpoint

Restore

Wasted
Computation
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Google Data Centers

Dalles, Oregon
 Hydroelectric power @ 2¢ / 

KW Hr
 50 Megawatts
 Enough to power 60,000 homes

 Engineered for maximum 
modularity & power efficiency

 Container: 1160 servers, 
250KW

 Server: 2 disks, 2 processors
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Typical Cluster Machine

Compute + Storage 
Nodes
 Medium-

performance 
processors

 Modest memory
 1-2 disks

Network
 Conventional 

Ethernet switches
 10 Gb/s within rack
 100 Gb/s across 

racks

Network

Compute + Storage Nodes

• • •CPU
Mem

CPU
Mem

CPU
Mem
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Machines with Disks
Lots of storage for 

cheap
 Seagate Barracuda
 2 TB @ $99

5¢ / GB
(vs. 40¢ in 2007)

Drawbacks
 Long and highly variable 

delays
 Not very reliable

Not included in HPC 
Nodes
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Oceans of Data, Skinny Pipes

1 Terabyte
 Easy to store
 Hard to move

Disks MB / s Time
Seagate Barracuda 115 2.3 hours
Seagate Cheetah 125 2.2 hours

Networks MB / s Time
Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

PSC Teragrid 
Connection

< 3,750 > 4.4 minutes
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Ideal Cluster Programming Model

 Application programs written in terms of high-level operations on data
 Runtime system controls scheduling, load balancing, …

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs



– 13 –

Map/Reduce Programming Model

 Map computation across many objects
 E.g., 1010 Internet web pages

 Aggregate results in many different ways
 System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004
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Map/Reduce Example

 Create an word index of set of documents
 Map: generate 〈word, count〉 pairs for all words in document
 Reduce: sum word counts across documents

Come,
Dick

Come 
and 
see.

Come 
and 
see 

Spot.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

〈dick, 1〉

〈see, 1〉

〈come, 1〉

〈and, 1〉

〈come, 1〉

〈come, 1〉

〈come, 1〉

M M M M

〈come, 2〉

〈see, 1〉

〈and, 1〉
〈and, 1〉

〈spot, 1〉

Sumdick
∑

1

and
∑

3

come
∑

6

see
∑

3

spot
∑

1
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Getting Started
Goal

 Provide access to MapReduce framework

Software
 Hadoop Project

 Open source project providing file system and Map/Reduce
 Supported and used by Yahoo
 Rapidly expanding user/developer base
 Prototype on single machine, map onto cluster
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Hadoop API

Requirements
 Programmer must supply Mapper & Reducer classes

Mapper
 Steps through file one line at a time
 Code generates sequence of <key, value>

 Call output.collect(key, value)

 Default types for keys & values are strings
 Lots of low-level machinery to convert to & from other data types
 But can use anything “writable”

Reducer
 Given key + iterator that generates sequence of values
 Generate one or more <key, value> pairs

 Call output.collect(key, value)
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Hadoop Word Count Mapper
public class WordCountMapper extends MapReduceBase

implements Mapper {

private final static Text word = new Text();

private final static IntWritable count = new IntWritable(1);

public void map(WritableComparable key, Writable values,
OutputCollector output, Reporter reporter)

throws IOException {
/* Get line from file */
String line = values.toString();
/* Split into tokens */
StringTokenizer itr = new StringTokenizer(line.toLowerCase(),

" \t.!?:()[],'&-;|0123456789");
while(itr.hasMoreTokens()) {

word.set(itr.nextToken());
/* Emit <token,1> as key + value
output.collect(word, count);

}
}

}
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Hadoop Word Count Reducer
public class WordCountReducer extends MapReduceBase

implements Reducer {

public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter) 
throws IOException {

int cnt = 0;
while(values.hasNext()) {

IntWritable ival = (IntWritable) values.next();
cnt += ival.get();

}
output.collect(key, new IntWritable(cnt));

}

}
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Map/Reduce Operation
Characteristics

 Computation broken into 
many, short-lived tasks
 Mapping, reducing

 Use disk storage to hold 
intermediate results

Strengths
 Great flexibility in placement, 

scheduling, and load 
balancing

 Can access large data sets

Weaknesses
 Higher overhead
 Lower raw performance

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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Map/Reduce Fault Tolerance
Data Integrity

 Store multiple copies of each 
file

 Including intermediate 
results of each Map / Reduce
 Continuous checkpointing

Recovering from Failure
 Simply recompute lost result

 Localized effect

 Dynamic scheduler keeps all 
processors busy

Map
Reduce

Map
Reduce

Map
Reduce

Map
Reduce

Map/Reduce
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Cluster Scalability Advantages

 Distributed system design principles lead to scalable design
 Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages
 Can use consumer-grade components

 maximizes cost-peformance

 Can have heterogenous nodes
 More efficient technology refresh

Operational Advantages
 Minimal staffing
 No downtime
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Exploring Parallel Computation Models

Map/Reduce Provides Coarse-Grained Parallelism
 Computation done by independent processes
 File-based communication

Observations
 Relatively “natural” programming model
 Research issue to explore full potential and limits

Low Communication
Coarse-Grained

High Communication
Fine-Grained

SETI@home PRAMThreads

Map/Reduce

MPI
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Example: Sparse Matrices with 
Map/Reduce

 Task: Compute product C = A·B
 Assume most matrix entries are 0

Motivation
 Core problem in scientific computing
 Challenging for parallel execution
 Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
-10 -80

-60 -250

-170-460

C

X =
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Computing Sparse Matrix Product

 Represent matrix as list of nonzero entries
〈row, col, value, matrixID〉

 Strategy
 Phase 1: Compute all products ai,k · bk,j

 Phase 2: Sum products for each entry i,j
 Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
1 110

A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B
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Phase 1 Map of Matrix Multiply

 Group values ai,k and bk,j according to key k

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = row

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = col
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Phase 1 “Reduce” of Matrix Multiply

 Generate all products ai,k · bk,j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

X

X

X
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Phase 2 Map of Matrix Multiply

 Group products ai,k · bk,j with matching values of i and j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = row,col
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Phase 2 Reduce of Matrix Multiply

 Sum products to get final entries

1 1-10
C

2 1-60
C

2 2-250
C

3 1-170
C

1 2-80
C

3 2-460
C

-10 -80
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-170-460

C
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Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C
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Matrix Multiply Phase 1 Mapper
public class P1Mapper extends MapReduceBase implements Mapper {

public void map(WritableComparable key, Writable values,
OutputCollector output, Reporter reporter) throws 

IOException {
try {

GraphEdge e = new GraphEdge(values.toString());
IntWritable k;
if (e.tag.equals("A"))

k = new IntWritable(e.toNode);
else

k = new IntWritable(e.fromNode);
output.collect(k, new Text(e.toString()));

} catch (BadGraphException e) {}
}

}
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Matrix Multiply Phase 1 Reducer
public class P1Reducer extends MapReduceBase implements Reducer {

public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter) 
throws IOException

{
Text outv = new Text(""); // Don't really need output values
/* First split edges into A and B categories */
LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();

LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
while(values.hasNext()) {

try {
GraphEdge e = 

new GraphEdge(values.next().toString());
if (e.tag.equals("A")) {

alist.add(e);
} else {

blist.add(e);
}

} catch (BadGraphException e) {}
}

// Continued
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MM Phase 1 Reducer (cont.)
// Continuation

Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while(aset.hasNext()) {

GraphEdge aedge = aset.next();
// For each outgoing edge
Iterator<GraphEdge> bset = blist.iterator();
while (bset.hasNext()) {

GraphEdge bedge = bset.next();
GraphEdge newe = aedge.contractProd(bedge);
// Null would indicate invalid contraction
if (newe != null) {

Text outk = new Text(newe.toString());
output.collect(outk, outv);

}
}

}
}

}
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Matrix Multiply Phase 2 Mapper
public class P2Mapper extends MapReduceBase implements Mapper {

public void map(WritableComparable key, Writable values,
OutputCollector output, Reporter reporter)

throws IOException {
String es = values.toString();
try {

GraphEdge e = new GraphEdge(es);
// Key based on head & tail nodes
String ks = e.fromNode + " " + e.toNode;
output.collect(new Text(ks), new Text(e.toString()));

} catch (BadGraphException e) {}

}
}
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Matrix Multiply Phase 2 Reducer
public class P2Reducer extends MapReduceBase implements Reducer {

public void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter) 

throws IOException
{

GraphEdge efinal = null;
while (efinal == null && values.hasNext()) {

try {
efinal = new GraphEdge(values.next().toString());

} catch (BadGraphException e) {}
}
if (efinal != null) {

while(values.hasNext()) {
try {

GraphEdge eother = 
new GraphEdge(values.next().toString());

efinal.weight += eother.weight;
} catch (BadGraphException e) {}

}
if (efinal.weight != 0)

output.collect(new Text(efinal.toString()),
new Text(""));

}
}

}
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Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication 
Primitive
 Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems
 Shortest path in graph
 Database join

Many Performance Considerations
 Kiefer, Volk, Lehner, TU Dresden
 Should do systematic comparison to other sparse matrix 

implementations
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MapReduce Implementation

Built on Top of Parallel File System
 Google: GFS, Hadoop: HDFS
 Provides global naming
 Reliability via replication (typically 3 copies)

Breaks work into tasks
 Master schedules tasks on workers dynamically
 Typically #tasks >> #processors

Net Effect
 Input: Set of files in reliable file system
 Output: Set of files in reliable file system
 Can write program as series of MapReduce steps
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Mapping

Parameters
 M: Number of mappers

 Each gets ~1/M of the input data

 R: Number of reducers
 Each reducer i gets keys k such that hash(k) = i

Tasks
 Split input files into M pieces, 16—64 MB each
 Scheduler dynamically assigns worker for each “split”

Task operation
 Parse “split”
 Generate key, value pairs & write R different local disk files

 Based on hash of keys

 Notify master of worker of output file locations
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Reducing

Shuffle
 Each reducer fetches its share of key, value pairs from each 

mapper using RPC
 Sort data according to keys

 Use disk-based (“external”) sort if too much data for memory

Reduce Operation
 Step through key-value pairs in sorted order
 For each unique key, call reduce function for all values
 Append result to output file

Result
 R output files
 Typically supply to next round of MapReduce
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Example Parameters

Sort Benchmark
 1010 100-byte records
 Partition into M = 15,000 64MB pieces

 Key = value
 Partition according to most significant bytes

 Sort locally with R = 4,000 reducers

Machine
 1800 2Ghz Xeons
 Each with 2 160GB IDE disks
 Gigabit ethernet
 891 seconds total
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Interesting Features

Fault Tolerance
 Assume reliable file system
 Detect failed worker

 Heartbeat mechanism

 Rescheduled failed task

Stragglers
 Tasks that take long time to execute
 Might be bug, flaky hardware, or poor partitioning
 When done with most tasks, reschedule any remaining 

executing tasks
 Keep track of redundant executions
 Significantly reduces overall run time
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Generalizing Map/Reduce
 Microsoft Dryad Project

Computational Model
 Acyclic graph of operators

 But expressed as textual program

 Each takes collection of objects and 
produces objects
 Purely functional model

Implementation Concepts
 Objects stored in files or memory
 Any object may be lost; any 

operator may fail
 Replicate & recompute for fault 

tolerance
 Dynamic scheduling

 # Operators >> # Processors
x1 x2 x3 xn

• • •

Op2 Op2 Op2 Op2• • •

• • •

Opk Opk Opk Opk• • •

Op1 Op1 Op1 Op1
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Conclusions

Distributed Systems Concepts Lead to Scalable 
Machines
 Loosely coupled execution model
 Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use
 Hadoop makes it widely available
 Great for some applications, good enough for many others

Lots of Work to be Done
 Richer set of programming models and implementations
 Expanding range of applicability

 Problems that are data and compute intensive
 The future of supercomputing?
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