MapReduce Programming
Oct 25, 2011

Topics

- Large-scale computing
 - Traditional high-performance computing (HPC)
 - Cluster computing
- MapReduce
 - Definition
 - Examples
- Implementation
- Properties
Typical HPC Machine

Compute Nodes

- High end processor(s)
- Lots of RAM

Network

- Specialized
- Very high performance

Storage Server

- RAID-based disk array
HPC Machine Example

Jaguar Supercomputer
- 3rd fastest in world

Compute Nodes
- 18,688 nodes in largest partition
- 2X 2.6Ghz 6-core AMD Opteron
- 16GB memory
- Total: 2.3 petaflop / 300 TB memory

Network
- 3D torus
 - Each node connected to 6 neighbors via 6.0 GB/s links

Storage Server
- 10PB RAID-based disk array
HPC Programming Model

- Programs described at very low level
 - Specify detailed control of processing & communications

- Rely on small number of software packages
 - Written by specialists
 - Limits classes of problems & solution methods
Bulk Synchronous Programming

Solving Problem Over Grid

- E.g., finite-element computation

Partition into Regions

- p regions for p processors

Map Region per Processor

- Local computation sequential
- Periodically communicate boundary values with neighbors
Typical HPC Operation

Characteristics

- Long-lived processes
- Make use of spatial locality
- Hold all program data in memory (no disk access)
- High bandwidth communication

Strengths

- High utilization of resources
- Effective for many scientific applications

Weaknesses

- Requires careful tuning of application to resources
- Intolerant of any variability
HPC Fault Tolerance

Checkpoint
- Periodically store state of all processes
- Significant I/O traffic

Restore
- When failure occurs
- Reset state to that of last checkpoint
- All intervening computation wasted

Performance Scaling
- Very sensitive to number of failing components
Google Data Centers

Dalles, Oregon
- Hydroelectric power @ 2¢ / KW Hr
- 50 Megawatts
 - Enough to power 60,000 homes

- Engineered for maximum modularity & power efficiency
- Container: 1160 servers, 250KW
- Server: 2 disks, 2 processors
Typical Cluster Machine

Compute + Storage Nodes

- Medium-performance processors
- Modest memory
- 1-2 disks

Network

- Conventional Ethernet switches
 - 10 Gb/s within rack
 - 100 Gb/s across racks
Machines with Disks

Lots of storage for cheap

- Seagate Barracuda
- 2 TB @ $99
 5¢ / GB
 (vs. 40¢ in 2007)

Drawbacks

- Long and highly variable delays
- Not very reliable

Not included in HPC Nodes
Oceans of Data, Skinny Pipes

No more blaming connection speeds for your losses.

Verizon FIOS – the fastest Internet available.

1 Terabyte

- Easy to store
- Hard to move

<table>
<thead>
<tr>
<th>Disks</th>
<th>MB / s</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seagate Barracuda</td>
<td>115</td>
<td>2.3 hours</td>
</tr>
<tr>
<td>Seagate Cheetah</td>
<td>125</td>
<td>2.2 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Networks</th>
<th>MB / s</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Internet</td>
<td>< 0.625</td>
<td>> 18.5 days</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>< 125</td>
<td>> 2.2 hours</td>
</tr>
<tr>
<td>PSC Teragrid</td>
<td>< 3,750</td>
<td>> 4.4 minutes</td>
</tr>
</tbody>
</table>

Plans as low $39.99/month (up to 5 Mbps). Plus, order online & get your first month FREE!

Enter your home phone number below to check availability.

Don’t have a Verizon phone number? Specify your address.
Ideal Cluster Programming Model

- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing, …
Map/Reduce Programming Model

- Map computation across many objects
 - E.g., 10^{10} Internet web pages
- Aggregate results in many different ways
- System deals with issues of resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004
Map/Reduce Example

- Create an word index of set of documents
- Map: generate \langleword, count\rangle pairs for all words in document
- Reduce: sum word counts across documents
Getting Started

Goal

- Provide access to MapReduce framework

Software

- Hadoop Project
 - Open source project providing file system and Map/Reduce
 - Supported and used by Yahoo
 - Rapidly expanding user/developer base
 - Prototype on single machine, map onto cluster
Hadoop API

Requirements

- Programmer must supply Mapper & Reducer classes

Mapper

- Steps through file one line at a time
- Code generates sequence of <key, value>
 - Call output.collect(key, value)
- Default types for keys & values are strings
 - Lots of low-level machinery to convert to & from other data types
 - But can use anything “writable”

Reducer

- Given key + iterator that generates sequence of values
- Generate one or more <key, value> pairs
 - Call output.collect(key, value)
public class WordCountMapper extends MapReduceBase
 implements Mapper {

 private final static Text word = new Text();

 private final static IntWritable count = new IntWritable(1);

 public void map(WritableComparable key, Writable values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 /* Get line from file */
 String line = values.toString();
 /* Split into tokens */
 StringTokenizer itr = new StringTokenizer(line.toLowerCase(),
 " 	!.?:()[]',&-;|0123456789");
 while(itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 /* Emit <token,1> as key + value
 output.collect(word, count);
 }
 }
}
public class WordCountReducer extends MapReduceBase
 implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {

 int cnt = 0;
 while (values.hasNext()) {
 IntWritable ival = (IntWritable) values.next();
 cnt += ival.get();
 }
 output.collect(key, new IntWritable(cnt));
 }
}
Map/Reduce Operation

Characteristics
- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Use disk storage to hold intermediate results

Strengths
- Great flexibility in placement, scheduling, and load balancing
- Can access large data sets

Weaknesses
- Higher overhead
- Lower raw performance
Map/Reduce Fault Tolerance

Data Integrity
- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

Recovering from Failure
- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy
Cluster Scalability Advantages

- Distributed system design principles lead to scalable design
- Dynamically scheduled tasks with state held in replicated files

Provisioning Advantages

- Can use consumer-grade components
 - maximizes cost-performance
- Can have heterogenous nodes
 - More efficient technology refresh

Operational Advantages

- Minimal staffing
- No downtime
Exploring Parallel Computation Models

Map/Reduce Provides Coarse-Grained Parallelism

- Computation done by independent processes
- File-based communication

Observations

- Relatively “natural” programming model
- Research issue to explore full potential and limits
Example: Sparse Matrices with Map/Reduce

Task: Compute product $C = A \cdot B$
Assume most matrix entries are 0

Motivation

- Core problem in scientific computing
- Challenging for parallel execution
- Demonstrate expressiveness of Map/Reduce
Computing Sparse Matrix Product

Represent matrix as list of nonzero entries
\langle \text{row}, \text{col}, \text{value}, \text{matrixID} \rangle

Strategy
- Phase 1: Compute all products \(a_{i,k} \cdot b_{k,j} \)
- Phase 2: Sum products for each entry \(i,j \)
- Each phase involves a Map/Reduce
Phase 1 Map of Matrix Multiply

Group values $a_{i,k}$ and $b_{k,j}$ according to key k
Phase 1 “Reduce” of Matrix Multiply

- Generate all products $a_{i,k} \cdot b_{k,j}$
Phase 2 Map of Matrix Multiply

- Group products $a_{i,k} \cdot b_{k,j}$ with matching values of i and j
Phase 2 Reduce of Matrix Multiply

Key = 1,1
1 \[\frac{-10}{c} \] 1

Key = 1,2
1 \[\frac{-80}{c} \] 2

Key = 2,1
2 \[\frac{-60}{c} \] 1

Key = 2,2
2 \[\frac{-90}{c} \] \[\frac{-250}{c} \] 2

Key = 3,1
3 \[\frac{-120}{c} \] \[\frac{-50}{a} \] 1

Key = 3,2
3 \[\frac{-280}{c} \] \[\frac{-180}{c} \] 2

- Sum products to get final entries

\[
\begin{bmatrix}
-10 & -80 \\
-60 & -250 \\
-170 & -460 \\
\end{bmatrix}
\]
public class P1Mapper extends MapReduceBase implements Mapper {
 public void map(WritableComparable key, Writable values,
 OutputCollector output, Reporter reporter) throws IOException {
 try {
 GraphEdge e = new GraphEdge(values.toString());
 IntWritable k;
 if (e.tag.equals("A"))
 k = new IntWritable(e.toNode);
 else
 k = new IntWritable(e.fromNode);
 output.collect(k, new Text(e.toString()));
 } catch (BadGraphException e) {}
 }
}
public class P1Reducer extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {

 Text outv = new Text("""); // Don't really need output values
 /* First split edges into A and B categories */
 LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();
 LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
 while(values.hasNext()) {
 try {
 GraphEdge e =
 new GraphEdge(values.next().toString());
 if (e.tag.equals("A")) {
 alist.add(e);
 } else {
 blist.add(e);
 }
 } catch (BadGraphException e) {}
 }

 // Continued
// Continuation

Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while(aset.hasNext()) {
 GraphEdge aedge = aset.next();
 // For each outgoing edge
 Iterator<GraphEdge> bset = blist.iterator();
 while (bset.hasNext()) {
 GraphEdge bedge = bset.next();
 GraphEdge newe = aedge.contractProd(bedge);
 // Null would indicate invalid contraction
 if (newe != null) {
 Text outk = new Text(newe.toString());
 output.collect(outk, outv);
 }
 }
}
}
Matrix Multiply Phase 2 Mapper

```java
public class P2Mapper extends MapReduceBase implements Mapper {

    public void map(WritableComparable key, Writable values,
            OutputCollector output, Reporter reporter)
            throws IOException {
        String es = values.toString();
        try {
            GraphEdge e = new GraphEdge(es);
            // Key based on head & tail nodes
            String ks = e.fromNode + " " + e.toNode;
            output.collect(new Text(ks), new Text(e.toString()));
        } catch (BadGraphException e) {};
    }
}
```
public class P2Reducer extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 GraphEdge efinal = null;
 while (efinal == null && values.hasNext()) {
 try {
 efinal = new GraphEdge(values.next().toString());
 } catch (BadGraphException e) {}
 }
 if (efinal != null) {
 while(values.hasNext()) {
 try {
 GraphEdge eother =
 new GraphEdge(values.next().toString());
 efinal.weight += eother.weight;
 } catch (BadGraphException e) {}
 }
 if (efinal.weight!= 0)
 output.collect(new Text(efinal.toString()),
 new Text(""));
 }
 }
}
Lessons from Sparse Matrix Example

Associative Matching is Powerful Communication Primitive

- Intermediate step in Map/Reduce

Similar Strategy Applies to Other Problems

- Shortest path in graph
- Database join

Many Performance Considerations

- Kiefer, Volk, Lehner, TU Dresden
- Should do systematic comparison to other sparse matrix implementations
MapReduce Implementation

Built on Top of Parallel File System

- Google: GFS, Hadoop: HDFS
- Provides global naming
- Reliability via replication (typically 3 copies)

Breaks work into tasks

- Master schedules tasks on workers dynamically
- Typically #tasks >> #processors

Net Effect

- Input: Set of files in reliable file system
- Output: Set of files in reliable file system
- Can write program as series of MapReduce steps
Mapping

Parameters

- **M**: Number of mappers
 - Each gets ~1/M of the input data
- **R**: Number of reducers
 - Each reducer i gets keys k such that hash(k) = i

Tasks

- Split input files into M pieces, 16—64 MB each
- Scheduler dynamically assigns worker for each “split”

Task operation

- Parse “split”
- Generate key, value pairs & write R different local disk files
 - Based on hash of keys
- Notify master of worker of output file locations
Reducing

Shuffle
- Each reducer fetches its share of key, value pairs from each mapper using RPC
- Sort data according to keys
 - Use disk-based ("external") sort if too much data for memory

Reduce Operation
- Step through key-value pairs in sorted order
- For each unique key, call reduce function for all values
- Append result to output file

Result
- R output files
- Typically supply to next round of MapReduce
Example Parameters

Sort Benchmark

- 10^{10} 100-byte records
- Partition into $M = 15,000$ 64MB pieces
 - Key = value
 - Partition according to most significant bytes
- Sort locally with $R = 4,000$ reducers

Machine

- 1800 2Ghz Xeons
- Each with 2 160GB IDE disks
- Gigabit ethernet
- 891 seconds total
Interesting Features

Fault Tolerance

- Assume reliable file system
- Detect failed worker
 - Heartbeat mechanism
- Rescheduled failed task

Stragglers

- Tasks that take long time to execute
- Might be bug, flaky hardware, or poor partitioning
- When done with most tasks, reschedule any remaining executing tasks
 - Keep track of redundant executions
 - Significantly reduces overall run time
Generalizing Map/Reduce

- Microsoft Dryad Project

Computational Model

- Acyclic graph of operators
 - But expressed as textual program
- Each takes collection of objects and produces objects
 - Purely functional model

Implementation Concepts

- Objects stored in files or memory
- Any object may be lost; any operator may fail
- Replicate & recompute for fault tolerance
- Dynamic scheduling
 - # Operators >> # Processors
Conclusions

Distributed Systems Concepts Lead to Scalable Machines

- Loosely coupled execution model
- Lowers cost of procurement & operation

Map/Reduce Gaining Widespread Use

- Hadoop makes it widely available
- Great for some applications, good enough for many others

Lots of Work to be Done

- Richer set of programming models and implementations
- Expanding range of applicability
 - Problems that are data and compute intensive
 - The future of supercomputing?