13- concurrency. t xt Tue Cct 11 12:48:20 2011 1

Not es on Distributed Concurrency Managenent
15-440, Fall 2011

Carnegie Mellon University

Randal E. Bryant

Readi ng: Tannenbaum Sect. 8.5
Part |: Single Server (Not covered very well in book)

Dat abase researchers laid the background for reasoni ng about how to
process a number of concurrent events that update sone shared gl oba
state. They invented the concept of a "transaction" in which a
collection of reads and wites of a global state are bundled such that
they appear to be single, indivisible operation. (They also defined
standard nodels for reliable storage and for robust operation. W'l
visit those later.)

Desirabl e characteristics of transaction processing captured by acronym ACl D

Atomicity: Each transaction is either conpleted in its entirety, or
aborted. In the latter case, it should have no effect on the global state.

Consi stency: Each transaction preserves a set of invariants about the
gl obal state. The exact nature of these is system dependent.

I sol ation: Each transaction executes as if it were the only one with
the ability to read and wite the gl obal state.

Durability: Once a transaction has been conmpleted, it cannot be "undone".

(Note that the term"atomcity" or "atom c operations" are often
synononous with the conbinati on of Atom city+lsol ation)

13- concurrency. t xt Tue Cct 11 12:48:20 2011 2

A transaction exanple.

| magi ne we have a set of bank acounts, where bal ances are stored as an
array Bal[i], giving the bal ance for account i.

We coul d define a transaction to transfer nobney fromone account to
anot her:

xfer(i, j, v):
if withdraw(i, v):
deposit(j, v)
el se
abort

where we define operations wthdraw & deposit as

wi thdraw(i, v):

b = Bal[i] /!l Read

if b>=v /1l Test
Bal[i] = b-v Il Wite
return true

el se

return fal se

deposit(j, v):
Bal[j] += vV

| magi ne we have Bal [x] 100, Bal[y] = Bal[z] = 0 and attenpt two transactions:
T1l:. xfer(x, y, 60)
T2: xfer(x, z, 70)

The ACI D properties ensure that any inplenentati on should make it
appear as if the two transactions are executed in sone serial order

T1 ; T2. Must have T1 succeed and T2 fail
End with Bal[x] = 40, Bal[y] = 60.

T2 ; T1. Must have T2 succeed and T1 fai
End with Bal[x] = 30, Bal[y] = 70.

But, without taking special care, we can see that things could go very
badly. Consider race condition in updating values of Bal[x]. |If
transactions interl eave between respective Read & Wite actions so
that Bal[x] ends up as either 30 or 40, but both transactions take

pl ace.

This could be viewed as a violation of isolation & durability.
For consi stency, consider follow ng function
/1 Return sum of bal ances of accounts x &y
sunbal ance(i, j, Kk):
return Bal[i] + Bal[j] + Bal[K]
As a state invariant, we can say sunbal ance(x, y, z) == 100 at al

times. This got violated due to race, causing noney to be
artificially created.

13- concurrency. t xt Tue Cct 11 12:48:20 2011 3

| mpl enenting transaction with | ocks
Easy to wrap lock around entire thing:

/] Transfer $v fromaccount i to account j
xfer(i, j, v):
l ock()
if withdraw(i, v):
deposit(j, v)

el se
abort
unl ock()

But, this would be a serious sequential bottleneck. Prefer to uses
finer grained | ocks, e.g., on a per-account basis:

Attenpt #1
/1 Transfer $v fromaccount i to account |
xfer(i, j, v):
l ock(i)
if withdraw(i, v):
unl ock(i)
l ock(j)
deposit(j, V)
unl ock(j)
el se
unl ock(i)
abort

There are two problens with this code:

1. Releasing lock i early can give consistency violation. Some other
transaction (e.g., sunbal ance) could see decrenented val ue of account
i, but unincremented val ue of count j.

Fix: Rule: Only release | ocks when all updating of state variabl es
conpl et ed

xfer(i, j, v):
[ock(i);
if withdraw(i, v):
l ock(j)
deposit(j, V)
unl ock(i); unlock(j)
el se
unl ock(i)
abort

2. There's a deadl ock. Consider Bal[i] = Bal[j] = 100 and then
attenpt transactions:

xfer(x, y, 40) and xfer(y, x, 30)

Can reach m dpoint both have conpleted their respective wthdrawal s,
but one holds lock on x while other holds |ock onvy.

Fi xi ng:
Al ways acquire locks in a fixed order

xfer(i, j, v):
lock(mn(i,j)); lock(max(i,j))
if withdraw(i, v):
deposit(j, v)
unl ock(i); unlock(j)
el se
unl ock(i); unlock(j)
abort

13- concurrency. t xt Tue Cct 11 12:48:20 2011 4

General rule: Always acquire |ocks according to sonme consistent globa
orderi ng.

VWhy does this work? State of |ocks can be represented as directed
graph. (the "Waits for" graph). Vertices represent transactions.
Edge fromvertex i to vertex j if transaction i is waiting for |ock
held by transaction j. Cycle in this graph indicates a deadl ock

Label the edge with its lock ID. For any cycle, there must be sone

pair of edges (i, j), (j, k) labeled with values m& n such that m>
n. That inplies that transaction j is holding lock mand it wants
lock n, where m> n. That inplies that j is not acquiring its lock in

proper order.

Thi s general schene is known as two-phase | ocking.
More precisely, as strong strict two-phase | ocking.

CGeneral 2-phase | ocking
Phase 1. Acquire or escalate locks (e.g., read lock to wite |ock)
Phase 2. Rel ease or deescal ate | ocks

Strict 2-phase | ocking
During Phase 2. Release wite locks only at end of transactions

Strong strict 2-phase | ocking
Duri ng Phase 2. Release all locks only at end of transactions. This
is the nost common version. Required to provide ACI D properti es.

QO her ways to handl e deadl ock

1. Have |l ock nanager build waits-for graph. Wen it finds a cycle,
chose an offending transaction and force it to abort.

2. Use tineout. Transactions should be short. If hit time limt,
chose sone transaction that is waiting for a lock and force it to
abort.

13- concurrency. t xt Tue Cct 11 12:48:20 2011 5

Thi nki ng about transacti ons.
For reliability, typically split transaction into phases:

1. Preparation. Figure out what to do and how it wll change state,
without altering state. Generate L: Set of |ocks, and U. List of updates
2. Commit or abort.
a. If everything OK the update gl obal state
b. If transaction cannot be conpl eted, |eave global state
unchanged.
In either case, release all |ocks

Exanpl e:

xfer(i, j, v):
L=(ij} |
U=1] [/ List of required updates
begi n(L) // Begin transaction. Acquire |ocks

bi = Bal[i]
bj = Bal[j]
if bi >= v:

Append(U, Bal[i] <- bi-v)
Append(U, Bal[j] <- bj+v)
commt(U, L)

el se
abort (L)

commt(U, L):
Performall updates in U
Rel ease all locks in L

abort (L):
Rel ease all locks in L

13- concurrency. t xt Tue Cct 11 12:48:20 2011 6

Part |1 Distributed Transactions

Sane general idea, but state spread across nultiple servers. Want to
enabl e single transaction to read and nodify gl obal state and nmaintain
ACI D properti es.

Ceneral idea:

1. Cdient initiates transaction. Makes use of "coordinator" (could be
sel f).

2. Al relevant servers operate as "participants”.

4. The coordinator assigns a unique Transaction ID (TID) for the
transacti on.

Two phase commit:
Split each transaction into two phases:

1. Prepare & vote.
Participants figure out all state changes
Each determines if it will be able to conplete transaction and
comuni cates with coordi nat or

2. Conmit.
Coor di nat or broadcasts to participants whether to commit or abort
If commit, then participants nake their respective state changes

| mpl emented by set of messages between coordi nator & participants:

1. A Coordinator sends "CanCommit" query to participants
B: Participants respond with "VoteConmit" or "VoteAbort" to
coor di nat or

2.A If any participant votes for abort, the entire transacti on nust
be aborted.
Send "DoAbort" nessages to participants. They rel ease | ocks.
B: Else, send "DoConmit" messages to participants. They conplete transaction

Exanpl e. Suppose bank account i managed by server A, and account | by
server B

Then Server A would inplenment transaction

L= {i}
begi n(L) // Acquire |ock
U =

Bal [i]
f b >=v:
Append(U, Bal[i] <- b-v)
vote comm t
el se vote abort

b
[

Server B woul d inpl enent transaction

— 5

i}
(L) [// Acquire |ock
]

al []]
Append(U, Bal[j] <- b+v)
vote comm t

L
be
U
b

InnQe i
vy]

Server B can assune that there will be a big enough balance ini’s
account. Entire transaction will abort otherw se.

VWhat about | ocking?

Locks held by individual participants

* Acquired at start of preparation process
* Rel eased as part of commt or abort.

13- concurrency. t xt Tue Cct 11 12:48:20 2011 7
Di stributed deadl ock

*

*

Possi bl e to get cyclic dependency of |ocks by transacti ons across
mul tiple servers

Mani fested in 2PC by having one of the participants unable to
respond to a voting request (because it is still waiting to lock its
| ocal resources).

Most often handle with timeout. Participant tines out and indicates
that transaction nust be aborted.

