Time and synchronization

("There's never enough time...")

Today's outline

- Global Time
- Time in distributed systems
 - A baseball example
- Synchronizing real clocks
 - Cristian's algorithm
 - The Berkeley Algorithm
 - Network Time Protocol (NTP)
- Logical time
- Lamport logical clocks
- Vector Clocks

Why Global Timing?

- Suppose there were a globally consistent time standard
- Would be handy
 - Who got last seat on airplane?
 - Who submitted final auction bid before deadline?
 - Did defense move before snap?

Time Standards

UT1

- Based on astronomical observations
- "Greenwich Mean Time"

TAI

- Started Jan 1, 1958
- Each second is 9,192,631,770 cycles of radiation emitted by Cesium atom
- Has diverged from UT1 due to slowing of earth's rotation

UTC

- TAI + leap seconds to be within 800ms of UT1
- Currently 34

Comparing Time Standards 0.6 0.4 UT1 - UTC 0.2 0 -0.2 -0.4-0.6 -0.8 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012

Distributed time

Premise

- The notion of time is well-defined (and measurable) at each single location
- But the relationship between time at different locations is unclear
 - Can minimize discrepancies, but never eliminate them

Reality

- Stationary GPS receivers can get global time with < 1µs error
- Few systems designed to use this

A baseball example

- Four locations: pitcher's mound, first base, home plate, and third base
- Ten events:
 - e₁: pitcher throws ball to home
 - e₂: ball arrives at home
 - e₃: batter hits ball to pitcher
 - e₄: batter runs to first base
 - e₅: runner runs to home
 - e₆: ball arrives at pitcher
 - e₇: pitcher throws ball to first base
 - e₈: runner arrives at home
 - e₉: ball arrives at first base
 - e₁₀: batter arrives at first base

A baseball example

- Pitcher knows e₁ happens before e₆, which happens before e₇
- Home plate umpire knows e₂ is before e₃, which is before e₄, which is before e₈, ...
- Relationship between e₈ and e₉ is unclear

Ways to synchronize

- Send message from first base to home?
 - Or to a central timekeeper
 - How long does this message take to arrive?
- Synchronize clocks before the game?
 - Clocks drift
 - million to one => 1 second in 11 days
- Synchronize continuously during the game?
 - GPS, pulsars, etc

Perfect networks

 Messages always arrive, with propagation delay exactly d

- Sender sends time T in a message
- Receiver sets clock to T+d
 - Synchronization is exact

Synchronous networks

 Messages always arrive, with propagation delay at most D

- Sender sends time T in a message
- Receiver sets clock to T + D/2
 - Synchronization error is at most D/2

Synchronization in the real world

- Real networks are asynchronous
 - Propagation delays are arbitrary
- Real networks are unreliable
 - Messages don't always arrive

Cristian's algorithm

- Request time, get reply
 - Measure actual round-trip time d

- Sender's time was T between t_1 and t_2
- Receiver sets time to T + d/2
 - Synchronization error is at most d/2
- Can retry until we get a relatively small d

The Berkeley algorithm

- Master uses Cristian's algorithm to get time from many clients
 - Computes average time
 - Can discard outliers
- Sends time adjustments back to all clients

The Network Time Protocol (NTP)

- Uses a hierarchy of time servers
 - Class 1 servers have highly-accurate clocks
 - connected directly to atomic clocks, etc.
 - Class 2 servers get time from only Class 1 and Class 2 servers
 - Class 3 servers get time from any server
- Synchronization similar to Cristian's alg.
 - Modified to use multiple one-way messages instead of immediate round-trip
- Accuracy: Local ~1ms, Global ~10ms

Real synchronization is imperfect

- Clocks never exactly synchronized
- Often inadequate for distributed systems
 - might need totally-ordered events
 - might need millionth-of-a-second precision

Logical time

- Capture just the "happens before" relationship between events
 - Discard the infinitesimal granularity of time
 - Corresponds roughly to causality
- Time at each process is well-defined
 - Definition (\rightarrow_i): We say $e \rightarrow_i e'$ if e happens before e' at process i

Global logical time

- Definition (→): We define e → e' using the following rules:
 - Local ordering: $e \rightarrow e'$ if $e \rightarrow_i e'$ for any process i
 - Messages: send(m) → receive(m) for any message m
 - Transitivity: $e \rightarrow e''$ if $e \rightarrow e'$ and $e' \rightarrow e''$
- We say e "happens before" e' if e → e'

Concurrency

- → is only a partial-order
 - Some events are unrelated
- Definition (concurrency): We say e is concurrent with e' (written e || e') if neither e → e' nor e' → e

The baseball example revisited

- $e_1 \rightarrow e_2$
 - by the message rule
- $e_1 \rightarrow e_{10}$, because
 - $-e_1 \rightarrow e_2$, by the message rule
 - $-e_2 \rightarrow e_4$, by local ordering at home plate
 - $-e_4 \rightarrow e_{10}$, by the message rule
 - Repeated transitivity of the above relations
- $e_8 \| e_9$, because
 - No application of the \rightarrow rules yields either $e_8 \rightarrow e_9$ or $e_9 \rightarrow e_8$

Lamport logical clocks

- Lamport clock L orders events consistent with logical "happens before" ordering
 - If e → e', then L(e) < L(e')
- But not the converse
 - -L(e) < L(e') does not imply $e \rightarrow e'$
- Similar rules for concurrency
 - -L(e) = L(e') implies $e \parallel e'$ (for distinct e,e')
 - $-e \parallel e'$ does not imply L(e) = L(e')
- i.e., Lamport clocks arbitrarily order some concurrent events

Lamport's algorithm

- Each process i keeps a local clock, L_i
- Three rules:
 - 1. At process i, increment L_i before each event
 - 2. To send a message *m* at process *i*, apply rule 1 and then include the current local time in the message: i.e., send(m,L_i)
 - 3. To receive a message (m,t) at process j, set $L_j = max(L_j,t)$ and then apply rule 1 before time-stamping the receive event
- The global time L(e) of an event e is just its local time
 - For an event e at process i, $L(e) = L_i(e)$

Lamport on the baseball example

Initializing each local clock to 0, we get

```
L(e_1) = 1
                    (pitcher throws ball to home)
L(e_2) = 2
                    (ball arrives at home)
L(e_3) = 3
                    (batter hits ball to pitcher)
L(e_{a})=4
                    (batter runs to first base)
L(e_5) = 1
                    (runner runs to home)
L(e_6) = 4
                    (ball arrives at pitcher)
L(e_7) = 5
                    (pitcher throws ball to first base)
L(e_8) = 5
                    (runner arrives at home)
L(e_0) = 6
                    (ball arrives at first base)
L(e_{10}) = 7
                    (batter arrives at first base)
```

 For our example, Lamport's algorithm says that the run scores!

Total-order Lamport clocks

- Many systems require a total-ordering of events, not a partial-ordering
- Use Lamport's algorithm, but break ties using the process ID
 - $-L(e) = M * L_i(e) + i$
 - *M* = maximum number of processes

Vector Clocks

- Goal
 - Want ordering that matches causality
 - -V(e) < V(e') if and only if $e \rightarrow e'$
- Method
 - Label each event by vector V(e) [c₁, c₂ ..., c_n]
 - c_i = # events in process i that causally precede e

Vector Clock Algorithm

- Initially, all vectors [0,0,...,0]
- For event on process i, increment own c_i
- Label message sent with local vector
- When process j receives message with vector [d₁, d₂, ..., d_n]:
 - Set local each local entry k to max(c_k, d_k)
 - Increment value of c_i

Vector clocks on the baseball example

Event	Vector	Action
e ₁	[1,0,0,0]	pitcher throws ball to home
e_2	[1,0,1,0]	ball arrives at home
e_3	[1,0,2,0]	batter hits ball to pitcher
e_4	[1,0,3,0]	batter runs to first base)
e_5	[0,0,0,1]	runner runs to home
e_6	[2,0,2,0]	ball arrives at pitcher
e ₇	[3,0,2,0]	pitcher throws ball to 1st base
e_8	[1,0,4,1]	runner arrives at home
e_9	[3,1,2,0]	ball arrives at first base
e ₁₀	[3,2,3,0]	batter arrives at first base

Vector: [p,f,h,t]

Important Points

- Physical Clocks
 - Can keep closely synchronized, but never perfect
- Logical Clocks
 - Encode causality relationship
 - Lamport clocks provide only one-way encoding
 - Vector clocks provide exact causality information