Time and synchronization

(“There’s never enough time…”)

“There’s never enough time…”
Today’s outline

• Global Time
• Time in distributed systems
 – A baseball example
• Synchronizing real clocks
 – Cristian’s algorithm
 – The Berkeley Algorithm
 – Network Time Protocol (NTP)
• Logical time
• Lamport logical clocks
• Vector Clocks
Why Global Timing?

• Suppose there were a globally consistent time standard

• Would be handy
 – Who got last seat on airplane?
 – Who submitted final auction bid before deadline?
 – Did defense move move before snap?
Time Standards

• UT1
 – Based on astronomical observations
 – “Greenwich Mean Time”

• TAI
 – Started Jan 1, 1958
 – Each second is 9,192,631,770 cycles of radiation emitted by Cesium atom
 – Has diverged from UT1 due to slowing of earth’s rotation

• UTC
 – TAI + leap seconds to be within 800ms of UT1
 – Currently 34
Comparing Time Standards

UT1 - UTC

![Graph showing UT1 - UTC comparison over time](image)
Distributed time

• Premise
 – The notion of time is well-defined (and measurable) at each single location
 – But the relationship between time at different locations is unclear
 • Can minimize discrepancies, but never eliminate them

• Reality
 – Stationary GPS receivers can get global time with < 1µs error
 – Few systems designed to use this
A baseball example

- Four locations: pitcher’s mound, first base, home plate, and third base
- Ten events:
 - e_1: pitcher throws ball to home
 - e_2: ball arrives at home
 - e_3: batter hits ball to pitcher
 - e_4: batter runs to first base
 - e_5: runner runs to home
 - e_6: ball arrives at pitcher
 - e_7: pitcher throws ball to first base
 - e_8: runner arrives at home
 - e_9: ball arrives at first base
 - e_{10}: batter arrives at first base
A baseball example

- Pitcher knows e_1 happens before e_6, which happens before e_7
- Home plate umpire knows e_2 is before e_3, which is before e_4, which is before e_8, ...
- Relationship between e_8 and e_9 is unclear
Ways to synchronize

• Send message from first base to home?
 – Or to a central timekeeper
 – How long does this message take to arrive?

• Synchronize clocks before the game?
 – Clocks drift
 • million to one => 1 second in 11 days

• Synchronize continuously during the game?
 – GPS, pulsars, etc
Perfect networks

- Messages always arrive, with propagation delay exactly d
- Sender sends time T in a message
- Receiver sets clock to $T + d$
 - Synchronization is exact
Synchronous networks

- Messages always arrive, with propagation delay at most D
- Sender sends time T in a message
- Receiver sets clock to $T + D/2$
 - Synchronization error is at most $D/2$
Synchronization in the real world

• Real networks are asynchronous
 – Propagation delays are arbitrary
• Real networks are unreliable
 – Messages don’t always arrive
Cristian’s algorithm

- Request time, get reply
 - Measure actual round-trip time d

- Sender’s time was T between t_1 and t_2
- Receiver sets time to $T + d/2$
 - Synchronization error is at most $d/2$
- Can retry until we get a relatively small d
The Berkeley algorithm

• Master uses Cristian’s algorithm to get time from many clients
 – Computes average time
 – Can discard outliers
• Sends time adjustments back to all clients
The Network Time Protocol (NTP)

• Uses a hierarchy of time servers
 – Class 1 servers have highly-accurate clocks
 • connected directly to atomic clocks, etc.
 – Class 2 servers get time from only Class 1 and Class 2 servers
 – Class 3 servers get time from any server

• Synchronization similar to Cristian’s alg.
 – Modified to use multiple one-way messages instead of immediate round-trip

• Accuracy: Local ~1ms, Global ~10ms
Real synchronization is imperfect

• Clocks never exactly synchronized
• Often inadequate for distributed systems
 – might need totally-ordered events
 – might need millionth-of-a-second precision
Logical time

• Capture just the “happens before” relationship between events
 – Discard the infinitesimal granularity of time
 – Corresponds roughly to causality
• Time at each process is well-defined
 – Definition (\rightarrow_i): We say $e \rightarrow_i e'$ if e happens before e' at process i
Global logical time

• Definition (\rightarrow): We define $e \rightarrow e'$ using the following rules:
 – Local ordering: $e \rightarrow e'$ if $e \rightarrow_i e'$ for any process i
 – Messages: $\text{send}(m) \rightarrow \text{receive}(m)$ for any message m
 – Transitivity: $e \rightarrow e''$ if $e \rightarrow e'$ and $e' \rightarrow e''$
• We say e “happens before” e' if $e \rightarrow e'$
Concurrency

• → is only a partial-order
 – Some events are unrelated

• Definition (concurrency): We say e is concurrent with e’ (written $e \parallel e'$) if neither $e \rightarrow e'$ nor $e' \rightarrow e$
The baseball example revisited

- \(e_1 \rightarrow e_2 \)
 - by the message rule

- \(e_1 \rightarrow e_{10} \), because
 - \(e_1 \rightarrow e_2 \), by the message rule
 - \(e_2 \rightarrow e_4 \), by local ordering at home plate
 - \(e_4 \rightarrow e_{10} \), by the message rule
 - Repeated transitivity of the above relations

- \(e_8 \parallel e_9 \), because
 - No application of the \(\rightarrow \) rules yields either \(e_8 \rightarrow e_9 \) or \(e_9 \rightarrow e_8 \)
Lamport logical clocks

• Lamport clock L orders events consistent with logical “happens before” ordering
 – If $e \rightarrow e'$, then $L(e) < L(e')$

• But not the converse
 – $L(e) < L(e')$ does not imply $e \rightarrow e'$

• Similar rules for concurrency
 – $L(e) = L(e')$ implies $e \parallel e'$ (for distinct e, e')
 – $e \parallel e'$ does not imply $L(e) = L(e')$

• i.e., Lamport clocks arbitrarily order some concurrent events
Lamport’s algorithm

• Each process i keeps a local clock, L_i
• Three rules:
 1. At process i, increment L_i before each event
 2. To send a message m at process i, apply rule 1 and then include the current local time in the message: i.e., $send(m, L_i)$
 3. To receive a message (m, t) at process j, set $L_j = \max(L_j, t)$ and then apply rule 1 before time-stamping the receive event
• The global time $L(e)$ of an event e is just its local time
 – For an event e at process i, $L(e) = L_i(e)$
Lamport on the baseball example

- Initializing each local clock to 0, we get

 $L(e_1) = 1$ (pitcher throws ball to home)
 $L(e_2) = 2$ (ball arrives at home)
 $L(e_3) = 3$ (batter hits ball to pitcher)
 $L(e_4) = 4$ (batter runs to first base)
 $L(e_5) = 1$ (runner runs to home)
 $L(e_6) = 4$ (ball arrives at pitcher)
 $L(e_7) = 5$ (pitcher throws ball to first base)
 $L(e_8) = 5$ (runner arrives at home)
 $L(e_9) = 6$ (ball arrives at first base)
 $L(e_{10}) = 7$ (batter arrives at first base)

- For our example, Lamport’s algorithm says that the run scores!
Total-order Lamport clocks

- Many systems require a total-ordering of events, not a partial-ordering
- Use Lamport’s algorithm, but break ties using the process ID:
 \[L(e) = M \times L_i(e) + i \]
 - \[M = \text{maximum number of processes} \]
Vector Clocks

• Goal
 – Want ordering that matches causality
 – $V(e) < V(e')$ if and only if $e \rightarrow e'$

• Method
 – Label each event by vector $V(e) [c_1, c_2 \ldots, c_n]$
 • $c_i = \#$ events in process i that causally precede e
Vector Clock Algorithm

- Initially, all vectors \([0,0,\ldots,0]\)
- For event on process \(i\), increment own \(c_i\)
- Label message sent with local vector
- When process \(j\) receives message with vector \([d_1, d_2, \ldots, d_n]\):
 - Set local each local entry \(k\) to \(\max(c_k, d_k)\)
 - Increment value of \(c_j\)
Vector clocks on the baseball example

<table>
<thead>
<tr>
<th>Event</th>
<th>Vector</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>e₁</td>
<td>[1,0,0,0]</td>
<td>pitcher throws ball to home</td>
</tr>
<tr>
<td>e₂</td>
<td>[1,0,1,0]</td>
<td>ball arrives at home</td>
</tr>
<tr>
<td>e₃</td>
<td>[1,0,2,0]</td>
<td>batter hits ball to pitcher</td>
</tr>
<tr>
<td>e₄</td>
<td>[1,0,3,0]</td>
<td>batter runs to first base)</td>
</tr>
<tr>
<td>e₅</td>
<td>[0,0,0,1]</td>
<td>runner runs to home</td>
</tr>
<tr>
<td>e₆</td>
<td>[2,0,2,0]</td>
<td>ball arrives at pitcher</td>
</tr>
<tr>
<td>e₇</td>
<td>[3,0,2,0]</td>
<td>pitcher throws ball to 1ˢᵗ base</td>
</tr>
<tr>
<td>e₈</td>
<td>[1,0,4,1]</td>
<td>runner arrives at home</td>
</tr>
<tr>
<td>e₉</td>
<td>[3,1,2,0]</td>
<td>ball arrives at first base</td>
</tr>
<tr>
<td>e₁₀</td>
<td>[3,2,3,0]</td>
<td>batter arrives at first base</td>
</tr>
</tbody>
</table>

- **Vector:** \([p,f,h,t]\)
Important Points

• Physical Clocks
 – Can keep closely synchronized, but never perfect

• Logical Clocks
 – Encode causality relationship
 – Lamport clocks provide only one-way encoding
 – Vector clocks provide exact causality information