Filesystems 2

Administrative

® Pl.| due today (but you know this already)

® |4 students attended IRC office hours last night - do
people like this format? Suggestions for alternatives?
Need pointers to IRC clients?

Filesystems

® |[ast time: Looked at how we could use RPC to
split filesystem functionality between client and
server

® But pretty much, we didn’t change the design

® We just moved the entire filesystem to the
server

® and then added some caching on the client in
various ways

Reprise of last time

® Client - VFS layer ----RPC--->Server
® + |ocal cache

® + | eases and/or timeouts for consistency

® How do you scale something like NFS or AFS? A:
Partitioning

® What handles do we have to partition on? The namespace.
/afs/landrew.cmu.edu/usr23/dga2 [...usrl,usr2, ..., usrN]

Partitioning / Sharding

® Very common technique in scaling distributed systems
® Key question: What do you partition based upon?
Drawbacks and advantages?
® “Username” (AFS): Makes sense, good for access
locality.
® But what if one user has a 200TB quota, or really
hammers the filesystem? Load balance may not
be as great.
® File or chunk: Very fine-grained load balance; - may
require accessing LOTS of servers. (Panasas NFS

striping)

You can go farther...

® But it requires ripping apart the filesystem
functionality into modules

® and placing those modules at different
computers on the network

® So now we need to ask...
what does a filesystem do, anyway?

® Well, there’s a disk...

® disks store bits. in fixed-length pieces
called sectors or blocks

® but a filesystem has ... files. and often
directories. and maybe permissions.
creation and modification time. and other
stuff about the files. (“metadata”)

Filesystem functionality

® Directory management (maps entries in a
hierarchy of names to files-on-disk)

® File management (manages adding, reading,
changing, appending, deleting) individual files

® Space management: where on disk to store
these things?

® Metadata management

Conventional filesystem

® Wraps all of these up together
® Useful concepts: [pictures]

® “Superblock” -- well-known location on disk where top-level filesystem info
is stored (pointers to more structures, etc.)

® “Free list” or “Free space bitmap” -- data structures to remember what’s
used on disk and what’s not. Why? Fast allocation of space for new files.

® “inode” - short for index node - stores all metadata about a file, plus
information pointing to where the file is stored on disk

e Small files may be referenced entirely from the inode; larger files may
have some indirection to blocks that list locations on disk

® Directory entries point to inodes

® ‘“extent” - a way of remembering where on disk a file is stored. Instead of
listing all blocks, list a starting block and a range. More compact
representation, but requires large contiguous block allocation.

Filesystem “VFS” ops

® VFS: (‘virtual filesystem‘): common abstraction layer
inside kernels for building filesystems -- interface is
common across FS implementations

® Think of this as an abstract data type for filesystems

® has both syntax (function names, return values, etc)
and semantics (“don’t block on this call”, etc.)

® One key thing to note: The VFS itself may do some
caching and other management...

® in particular: often maintains an inode cache

Directory operations

® readdir(path) - return directory entries for
each file in the directory

® mkdir(path) -- create a new directory

® rmdir(path) -- remove the named directory

File operations

® mknod(path, mode, dev) -- create a new “node” (generic: a file is one type
of node; a device node is another)

® unlink(path) -- remove link to inode, decrementing inode’s reference count

® many filesystems permit “hard links” -- multiple directory entries
pointing to the same file

® rename(path, newpath)

® open -- open a file, returning a file handle
® read, write

® truncate -- cut off at particular length

® flush -- close one handle to an open file

® release -- completely close file handle

Metadata ops

® getattr(path) -- return metadata struct

® chmod / chown (ownership & perms)

Back to goals of DFS

® Users should have same view of system, be able to share files
® |[ast time:

® Central fileserver handles all filesystem operations --
consistency was easy, but overhead high, scalability poor

® Moved to NFS and then AFS: Added more and more
caching at client; added cache consistency problems

® Solved using timeouts or callbacks to expire cached
contents

Protocol & consistency

® Remember last time: NFS defined operations to occur on unique
inode #s instead of names... why? idempotency. Wanted operations
to be unique.

® Related example for today when we're considering splitting up
components: moving a file from one directory to another

® What if this is a complex operation (“remove from one”,“add to
another”), etc.

® Can another user see intermediate state?? (e.g,file in both
directories or file in neither?)

® last time: Saw issue of when things become consistent

® Presented idea of close-to-open consistency as a compromise

Scaling beyond...

® What happens if you want to build AFS for all of
CMU? More disks than one machine can handle;
more users than one machine can handle

e Simplest idea: Partition users onto different servers
® How do we handle a move across servers?

® How to divide the users? Statically? What about
load balancing for operations & for space! Some
files become drastically more popular?

“Cluster” filesystems Frangipani design

® Lab inspired by Frangipani, a scalable distributed — Frangipani stores all data (inodes,
ﬁlesystem. & directories, data) in petal; uses lock
server for consistency (eg, creating
e Think back to our list of things that filesystems Frangipani file file)
have to do server
Distributed Petal aggregates many disks (across
° Concurrency management lock service many machines__ into one big
“virtual disk”. Simplifying

® Space allocation and data storage abstraction for both design

Petal distributed &i !
|mp|ementat|on. exports extents -

e Directory management and naming virtual disk provides allocation, deallocation,
etc.
Physical disks Internally: maps (virtual disk, offset)

to (server, physical disk, offset)

Compare with NFS/
AFS

p— — ® In NFS/AFS, clients just relay all FS calls to the server;
file server module file server module Central Servel’.

Petal Petal
device driver device driver

| | ® Here, clients run enough code to know which server to

1 Network |
— direct things to; are active participants in filesystem.

Petal virfual disk

Consequential design

User programs User programs

File system switch File system switch

I

® (n.b.-- you could, of course, use the Frangipani/Petal

pe [a [a [design to build a scalable NFS server -- and, in fact,

’ similar techniques are how a lot of them actually are
built. See upcoming lecture on RAID, though: replication
and redundancy management become key)

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

