06-rpc. txt Thu Sep 15 09:52:41 2011 1

15- 440, Fall 2011, Cass 06, Sept. 15, 2011
Randal E. Bryant

All code available in
| af s/ cs. cmu. edu/ academ c/ cl ass/ 15440-f 11/ code/ cl ass06

Renote Procedure Calls (Tannenbaum 4. 1-4.2)
Revi siting Go channel concurrency.

Consi der channel of size 0: "Rendezvous

c := chan int
var x int =0
T1:
x =1
<- C
T2:
c <1
print x
T1: ---- x =1 --
T2: . |-- print 1 ---

Channel has single sending thread & single receiving thread:

Wi chever one hits its channel operation must wait until other one is
ready. Then both atonically see that sender has sent & receiver has
received. (In reality, may tinme slice threads).

VWhat about nultiple senders or receivers:

Then OS will sel ect exactly one sender & one receiver, and they wl|
rendezvous.

06-rpc. txt Thu Sep 15 09:52:41 2011 2

General vocabul ary

M ddl eware: Protocol / software that |ives just bel ow Application
provi di ng hi gher-1evel services.

Exanpl es:
HTTP (al t hough now often used as transport protocol)
LSP from project 1
Persistent vs. Transient conmunication
Persistent: Protocol holds onto all information until operation
conpl et ed
E.g., TCP, LSP

Transi ent: Protocol discards information if fails
E.g., UDP

Synchronous vs. Asynchronous
Synchronous: Sender bl ocks until operation conpletes

Asynchronous: Sender returns from operation inmediately
E.g., Everything we' ve seen so far

06-rpc. txt Thu Sep 15 09:52:41 2011 3

Renot e Procedure cal
One way to provide client/server nodel to nodel.

Idea: On client, appear to make procedure call, but operation actually
perfornmed on server.

How t hi s worKk:

1. Cdient application calls function

2. Function is really a "stub" that packages function name & argunents
as nessage ("marshaling")

3. Send nessage to server

4. Server unpacks nessage, determ nes what function is being requested
and executes it.

5. Server marshals results back into nessage and sends it back to
client

6. Cient stub unmarshals results and returns back to caller

Two versions:

Synchronous: Cient nust wait for all steps to conplete.

Asynchronous: Stub returns after step 3. Sonme ot her nechani sm
provided to pick up result later.

Det ai | s:
Mar shal i ng:
Need convention for how to send objects.

Exanpl e = JSON. Very general form Converts struct to nanmed fields.
Applied recursively

Exanpl e applying it to our sequential buffer:
Add net hod to bufi:

func (bp *Buf) String() string {

b, e := json.Marshal I ndent(*bp, "", " ")
if el=nil {

return e.String()
}

return string(b)

}

Here' s exanpl es when inserting structures of form
type Val struct {
X interface{}
}
Enpty Buffer: {"Head":null,"Tail":null}
Insert "ABC' {"Head":{"Val":{"X":"ABC'},"Next":null},
"Tail":{"Val":{"X":"ABC'},"Next":null}}

I nsert "GH"
{"Head": {"Val":{"X":"ABC'}, "Next":{"Val ": {"X":"GH "}, "Next":null}},
"Tail":{"val":{"X":"GH "}, "Next":null}}

(Looks nuch nicer when use Marshal | ndent)
Mai n point: There are standard ways to convert objects into byte

sequences. These are "deep" encodi ngs, neaning that they go all the
way into a structure.

06-rpc. txt Thu Sep 15 09:52:41 2011

06-rpc. txt Thu Sep 15 09:52:41 2011 5

RPC Exanpl e.
Usi ng Go RPC package.
In general see two styles of RPC inplenentation:

* Shallow integration. Mist use lots of library calls to set things
up:
- How to format data
- Registering which functions are avail abl e and how t hey are
i nvoked.

* Deep integration.
- Data formatti ng done based on type decl arations
- Al public methods of object are registered.

Go is that latter.

06-rpc. txt Thu Sep 15 09:52:41 2011 6

Server side, wite each operation as a function

func (s *servertype) Operate (args *argtype, reply *argtype) os.Error
Function nust decode argunents, performoperation, encode reply.
Returns nil if no error.

Then nust register servertype. Al exported (uppercase nanes)
operations avail abl e.

Client side:
Synchr onous cal |

I nvoke Call, with operation name (as string), and pointers for
argunents and reply.

When Call returns, get result fromreply.
Asynchr onous cal |

I nvoke Go, with operation nanme and pointers for argunents and reply,
and channel for responding.

Function returns i medi ately.

If want to get result, then receive from channel

06-rpc. txt Thu Sep 15 09:52:41 2011 7

RPC Exanpl e: An RPC version of an asynchronous buffer

/1 For passing arbitrary val ues
type Val struct {

X interface{} # Enbed in struct. Not sure if necessary
}

/1 Server inplenmentation
type SrvBuf struct {
abuf *dserver. Buf # Use one of our asynchronous buffers
since needs concurrent access

}

func NewSrvBuf () *SrvBuf ({
return &SrvBuf{dserver.NewBuf ()}
}

Exanpl e nethods for server

Note signature. Pass in argunents + reply | ocation
func (srv *SrvBuf) Insert(arg *Val, reply *Val) os.Error {
srv. abuf.lnsert(*arg) # Insert object of type Va
*reply = nullVal () # W apper around ni
VIiogf (2, "Inserted W\n", arg.X) # % useful format type
VI ogf (3, "Buffer: %\n", srv.abuf.String()) # JSON marshaling
return nil

}

func (srv *SrvBuf) Front(arg *Val, reply *Val) os.Error {
*reply = srv.abuf.Front().(Val) # Since inserted values of type Va
VI ogf (2, "Front value %\n", reply. X
VI ogf (3, "Buffer: 9%\n", srv.abuf.String())
return nil # This nmeans it’s K

Here's the magi ne
func Serve(port int) {
srv = NewSrvBuf ()
Regi ster takes object and nmakes it’s exported met hods avail abl e
rpc. Regi ster(srv)
Use HTTP as conmmuni cation protoco
rpc. Handl eHTTP()
addr := fnt.Sprintf(":%", port)
|, e :=net.Listen("tcp", addr)
Checkf at al (e)
VI ogf (1, "Running server on port %l\n", port)
VI ogf (3, "Buffer: %\n", srv.abuf.String())
Set up HTTP server
http. Serve(l, nil)

06-rpc. txt Thu Sep 15 09:52:41 2011 8

Client side

Really don't need nore than provided by RPC package
type SClient struct {

client *rpc.Cient
}

Wapper to access Call function

func (cli *SCient) Call(serviceMethod string, args interface{},
reply interface{}) os.Error {
return cli.client.Call (serviceMethod, args, reply)

}

Setup up TCP client

func NewSCl ient(host string, port int) *SCient {
hostport := fnt.Sprintf("%: %", host, port)
client, e := rpc.Di al HTTP("tcp", hostport)
Checkf at al (e)
VI ogf (1, "Connected to %s\n", hostport)
return &Client{client}

}
Making RPC calls

func (cli *SCient) Insert(v Val) {
var rv Val
e :=cli.Call("SrvBuf.Insert", &, &rv)
Vi ogf (2, "Inserted %\n", v)
i f Checkreport (1, e) {
fm.Printf("lInsert failure\n")

}

}

func (cli *SCient) Remove() Val {
av := nullVal ()
var rv Val

e :=cli.Call("SrvBuf.Renmove", &av, &rv)

i f Checkreport(1, e) {
fnt.Printf("Renmove failure\n")
return null Val ()

}
VI ogf (2, "Renoved %\ n", rv)
return rv

