
Distributed Systems
Security II

15-440

Take-home points

• What does using public-key for our authentication buy
us?

• Compare kerberos (needham-schroeder) and SSL
with a certificate authority

• Metrics: Scaling, robustness, timeliness

• Motivate & understand perfect forward secrecy and
diffie-hellman

• A touch of research: Perspectives SSL auth vs. CA auth

Remember digital
signatures

• From last time...

• Shared key crypto with key KAB:

• Intuition: Hash them together

• HMAC(KAB, m) = H((K..) | H(K ... | m))

• Public key crypto with KA, K-1A:

• Intuition: “signing” is encryption using the private key. But
pub key operations are expensive: To make it practical, hash
first so that the message is small, fixed-size.

• E(K-1A , H(m))

Today: Auth protocols

• Needham-Schroeder - basis of Kerberos
authentication

• Goal: Secure, usable authenticaiton system
without needing public-key cryptography

• Idea: Everyone shares a key with a trusted third
party server

• If A wants to talk to B, on demand, that server
generates key KAB and shares it with (and only
with) A and B.

Needham-Schroeder and Kerberos

• In following diagrams:
–Client C initiates a connection to server S

• Authentication server A generates “session key” KSC
for them to use to talk to each other. Only A, S, and C
will know this key.

–Each entity shares a private key with the
authentication server:
• C and A share a secret key KAC

•S and A share secret key KAS

–Nobody else knows either of those two keys.

Needham-Schroeder and Kerberos

• Messages:
1: C to A: C,S,n

Authentication server A

Server SClient C

1

A nonce: a “number used
once.” In Kerberos this is
usually the time.

Needham-Schroeder and Kerberos

• Messages:
1: C to A: C,S,n
2: A to C: {Kcs,S,n}KAC {C,S,Kcs,t1,t2}KAS

Authentication server A

Server SClient C

1
2

the session key

KCS,S,n encrypted
with private key KAC

C,S,KCS,t1,t2
encrypted with
secret key KAS

start and end
time for KCS

Needham-Schroeder and Kerberos

• Messages:
1: C to A: C,S,n
2: A to C: {Kcs,S,n}KAC {C,S,Kcs,t1,t2}KAS

3: C to S: {request,n’,…}Ksc {C,S,Kcs,t1,t2}KAS

Authentication server A

Server SClient C

1
2

3

Needham-Schroeder and Kerberos

• Messages:
1: C to A: C,S,n
2: A to C: {Kcs,S,n}Kc {C,S,Kcs,t1,t2}Ks

3: C to S: {request,n’,…}Ksc {C,S,Kcs,t1,t2}Ks

4: S to C: {n’,response,…}Ksc

Authentication server A

Server SClient C

1
2

3

4

History
• The first version of N-S didn’t have the nonce/timestamp.

– It was vulnerable to a “replay attack”

• Replay Attack: An attacker can sniff the traffic and re-play an
old value.
– They don’t have to know what it means, necessaril
– In N-S’s case, if an attacker compromised an old key, they could use a

replay attack to still use that old key.

• Usual warning: Needham and Schroeder are (were -
Needham died in 2003) really smart guys. And they goofed
this protocol... twice. The vulnerabilities survived in one of the
most widely-examined crypto protocols from 1978 until 1995!

10

Analysis

• Everyone trusts the auth server
–It can read, modify, etc., all traffic. It knows all the

keys.
• All connections require a conversation with

the auth server.
–If the auth server goes down, nobody can talk.

• Auth server must store all keys.
–And must be online and thus exposed to potential

compromise.
• Let’s fix some of these... with public keys! :)

11

Simplified SSL/TLS

• Step 1: offline, the server gets a “certificate” from
the CA that binds its identity to a key it generated.
– You do this when you configure the server...

• Client C gets the CA’s public key (pre-baked in to
the software?)

Server SClient C

Certificate
 Authority

I’m S.
<proof>

{S’s public key is Ks},
signed -- CA.

Simplified SSL/TLS

• Online, for C to talk to S...
1: request
2: S’s X.509v3 certificate, containing its public key

signed by a certificate authority

Server SClient C 2

1

Simplified SSL

• Messages:
1: request
2: S’s X.509v3 certificate, containing its public key

signed by a certificate authority
3: Client verifies the certificate using the certificate

authority’s public key, sends session key for
subsequent communication (encrypted with S’s public
key)

Server SClient C 2

1

3

Note: Actual TLS protocol is a lot more complicated - it can negotiate different versions,
cipher suites, etc...

Analysis
• Public key lets us take the trusted third party offline:

– If it’s down, we can still talk!
– But we trade-off ability for fast revocation

• If server’s key is compromised, we can’t revoke it immediately...
• Usual trick:

– Certificate expires in, e.g., a year.
– Have an on-line revocation authority that distributes a revocation list. Kinda clunky but

mostly works, iff revocation is rare. Clients fetch list periodically.

• Better scaling: CA must only sign once... no matter
how many connections the server handles.

• If CA is compromised, attacker can trick clients into
thinking they’re the real server. But...

15

Forward secrecy

• In N-S, if auth server key KAS is
compromised a year later,
–from the traffic log, attacker can extract session

key (encrypted with auth server keys).
–attacker can decode all traffic retroactively.

• In SSL, if CA key is compromised a year
later,
–Only new traffic can be compromised. Cool...

• But in SSL, if server’s key is compromised...
–Old logged traffic can still be compromised...

16

Diffie-Hellman Key Exchange

• Different model of the world: How to generate
keys between two people, securely, no trusted
party, even if someone is listening in.

• This is cool. But: Vulnerable to man-in-the-
middle attack. Attacker pair-wise negotiates
keys with each of A and B and decrypts traffic
in the middle. No authentication...

17

image from wikipedia

Authentication?
• But we already have protocols that give us

authentication!
– They just happen to be vulnerable to disclosure if long-lasting

keys are compromised later...
• Hybrid solution:

– Use diffie-hellman key exchange with the protocols we’ve
discussed so far.

– Auth protocols prevent M-it-M attack if keys aren’t yet
compromised.

– D-H means that an attacker can’t recover the real session key
from a traffic log, even if they can decrypt that log.

– Client and server discard the D-H parameters and session
key after use, so can’t be recovered later.

• This is called “perfect forward secrecy”. Nice property.
18

Big picture, usability, etc.

• public key infrastructures (PKI)s are great,
but have some challenges...
–Yesterday, we discussed how your browser trusts

many, many different CAs.
–If any one of those is compromised, an attacker

can convince your browser to trust their key for a
website... like your bank.

–Often require payment, etc.
• Alternative: the “ssh” model, which we call

“trust on first use” (TOFU). Sometimes
called “prayer.” 19

Perspectives approach

20

