
Peer-to-Peer

15-441

2

Scaling Problem
• Millions of clients ! server and network

meltdown

3

P2P System

• Leverage the resources of client machines (peers)

– Computation, storage, bandwidth

4

Why p2p?

• Scaling: Create system whose capacity grows with # of
clients - automatically!

• Self-managing

– This aspect attractive for corporate/datacenter needs

– e.g., Amazon!s 100,000-ish machines, google!s 300k+

• Harness lots of “spare” capacity at end-hosts

• Eliminate centralization

– Robust to failures, etc.

– Robust to censorship, politics & legislation??

– Create apps/services without having huge resources

5

Today!s Goal

• p2p is hot.

• There are tons and tons of instances

• But that!s not the point

• Identify fundamental techniques useful in p2p

settings

• Understand the challenges

• Look at the (current!) boundaries of where 2p

is particularly useful 5 6

Outline

• p2p file sharing techniques
– Downloading: Whole-file vs. chunks

– Searching
• Centralized index (Napster, etc.)

• Flooding (Gnutella, etc.)

• Smarter flooding (KaZaA, …)

• Routing (Freenet, etc.)

• Uses of p2p - what works well, what doesn!t?
– servers vs. arbitrary nodes

– Hard state (backups!) vs soft-state (caches)

• Challenges

7

Searching & Fetching

Human:
 “I want to watch that great 80s cult classic

 "Better Off Dead!”

1.Search:
 “better off dead” -> better_off_dead.mov
or -> 0x539fba83ajdeadbeef

2.Locate sources of better_off_dead.mov

3.Download the file from them
7 8

Searching

Internet

N1

N2 N3

N6N5

N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

9

Search Approaches

• Centralized

• Flooding

• A hybrid: Flooding between
“Supernodes”

• Structured

9 10

Different types of searches

• Needles vs. Haystacks

– Searching for top 40, or an obscure punk

track from 1981 that nobody!s heard of?

• Search expressiveness

– Whole word? Regular expressions? File

names? Attributes? Whole-text search?

• (e.g., p2p gnutella or p2p google?)

11

Framework

• Common Primitives:

– Join: how to I begin participating?

– Publish: how do I advertise my file?

– Search: how to I find a file?

– Fetch: how to I retrieve a file?

12

Centralized

• Centralized Database:
– Join: on startup, client contacts central

server

– Publish: reports list of files to central
server

– Search: query the server => return
node(s) that store the requested file

13

Napster Example: Publish

I have X, Y, and Z!

Publish

insert(X,
 123.2.21.23)
...

123.2.21.23

14

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

15

Napster: Discussion

• Pros:

– Simple

– Search scope is O(1) for even complex

searches (one index, etc.)

– Controllable (pro or con?)

• Cons:

– Server maintains O(N) State

– Server does all processing

– Single point of failure
• Technical failures + legal (napster shut down

16

Searching Wrap-Up

Type O(search) storage Fuzzy?

Central O(1) O(N) Yes

Flood

Super

Structured

17

Query Flooding

• Join: Must join a flooding network
– Usually, establish peering with a few

existing nodes

• Publish: no need, just reply

• Search: ask neighbors, who ask their
neighbors, and so on... when/if found,
reply to sender.
– TTL limits propagation

18

I have file A.

I have file A.

Example: Gnutella

Where is file A?

Query

Reply

19

Flooding: Discussion

• Pros:

– Fully de-centralized

– Search cost distributed

– Processing @ each node permits powerful search
semantics

• Cons:

– Search scope is O(N)

– Search time is O(???)

– Nodes leave often, network unstable

• TTL-limited search works well for haystacks.

– For scalability, does NOT search every node. May have
to re-issue query later

Flooding: Discussion 2

• Overlay topology can be important

– Connections between peers != the

underlying network links

– Might cross country (or world) multiple

times

20

21

Supernode Flooding

• Join: on startup, client contacts a “supernode” ...
may at some point become one itself

• Publish: send list of files to supernode

• Search: send query to supernode, supernodes flood
query amongst themselves.

– Supernode network just like prior flooding net

22

Supernode Network Design
“Super Nodes”

23

Supernode: File Insert

I have X!

Publish

insert(X,
 123.2.21.23)
...

123.2.21.23

24

Supernode: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

25

Supernode: Which nodes?

• Often, bias towards nodes with good:

– Bandwidth

– Computational Resources

– Availability!

26

Stability and Superpeers

• Why superpeers?

– Query consolidation

• Many connected nodes may have only a few files

• Propagating a query to a sub-node would take more b/w

than answering it yourself

– Caching effect

• Requires network stability

• Superpeer selection is time-based

– How long you!ve been on is a good predictor of

how long you!ll be around.

27

Superpeer results

• Basically, “just better” than flood to all

• Gets an order of magnitude or two
better scaling

• But still fundamentally: o(search) *
o(per-node storage) = O(N)

– central: O(1) search, O(N) storage

– flood: O(N) search, O(1) storage

– Superpeer: can trade between
25 28

Structured Search:

Distributed Hash Tables
• Academic answer to p2p

• Goals

– Guaranteed lookup success

– Provable bounds on search time

– Provable scalability

• Makes some things harder

– Fuzzy queries / full-text search / etc.

• Read-write, not read-only

• Hot Topic in networking since introduction in

~2000/2001

29

DHT: Overview

• Abstraction: a distributed “hash-table” (DHT)

data structure:

– put(id, item);

– item = get(id);

• Implementation: nodes in system form a

distributed data structure

– Can be Ring, Tree, Hypercube, Skip List, Butterfly

Network, ...

30

DHT: Overview (2)

• Structured Overlay Routing:

– Join: On startup, contact a “bootstrap” node and integrate

yourself into the distributed data structure; get a node id

– Publish: Route publication for file id toward a close node id

along the data structure

– Search: Route a query for file id toward a close node id.

Data structure guarantees that query will meet the

publication.

– Important difference: get(key) is for an exact match on key!

• search(“spars”) will not find file(“briney spars”)

• We can exploit this to be more efficient

31

DHT: Example - Chord

• Associate to each node and file a unique id in

an uni-dimensional space (a Ring)

– E.g., pick from the range [0...2m]

– Usually the hash of the file or IP address

–

from MIT in 2001

32

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

33

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

34

Node Join

• Compute ID

• Use an existing node to route to that ID in

the ring.

– Finds s = successor(id)

• ask s for its predecessor, p

• Splice self into ring just like a linked list

– p->successor = me

– me->successor = s

– me->predecessor = p
34

35

DHT: Chord Join

• Assume an identifier space [0..8]

• Node n1 joins
0

1

2

3

4

5

6

7

i id+2
i
succ

0 2 1
1 3 1
2 5 1

Succ. Table

36

DHT: Chord Join

• Node n2 joins
0

1

2

3

4

5

6

7

i id+2
i
succ

0 2 2
1 3 1
2 5 1

Succ. Table

i id+2
i
succ

0 3 1
1 4 1
2 6 1

Succ. Table

37

DHT: Chord Join

• Nodes n0, n6 join
0

1

2

3

4

5

6

7

i id+2
i
succ

0 2 2
1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6
1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1
1 2 2
2 4 0

Succ. Table

i id+2
i
succ

0 7 0
1 0 0
2 2 2

Succ. Table

38

DHT: Chord Join

• Nodes:
n1, n2, n0, n6

• Items:
f7, f2

0

1

2

3

4

5

6

7 i id+2
i
succ

0 2 2
1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6
1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1
1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0
1 0 0
2 2 2

Succ. Table

Basic search

• Forward from successor to successor...

• But that!s O(N)!

39 40

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or

equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring

41

DHT: Chord Routing

• Upon receiving a query for
item id, a node:

• Checks whether stores the
item locally

• If not, forwards the query
to the largest node in its
finger table that does not
exceed id

0

1

2

3

4

5

6

7 i id+2
i
succ

0 2 2
1 3 6
2 5 6

Succ. Table

i id+2
i
succ

0 3 6
1 4 6
2 6 6

Succ. Table

i id+2
i
succ

0 1 1
1 2 2
2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

42

DHT: Chord Summary

• Routing table size?

–Log N fingers

• Routing time?

–Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

• Resulting Properties:

– Routing table size is O(log N) , where N is the total

number of nodes

– Guarantees that a file is found in O(log N) hops

43

Searching Wrap-Up

Type O(search) storage Fuzzy?

Central O(1) O(N) Yes

Flood ~O(N) O(1) Yes

Super < O(N) > O(1) Yes

Structured O(log N) O(log N) not really

44

DHT: Discussion

• Now being used in a few apps,
including BitTorrent.

• Pros:

– Guaranteed Lookup

– O(log N) per node state and search scope

• Cons:

– Supporting non-exact match search is

(quite!) hard. Let!s examine...

45

Fetching Data

• Once we know which node(s) have the
data we want...

• Option 1: Fetch from a single peer

– Problem: Have to fetch from peer who has

whole file.

• Peers not useful sources until d/l whole file

• At which point they probably log off. :)

– How can we fix this?

43 46

Chunk Fetching

• More than one node may have the file.

• How to tell?

– Must be able to distinguish identical files

– Not necessarily same filename

– Same filename not necessarily same file...

• Use hash of file

– Common: MD5, SHA-1, etc.

• How to fetch?

– Get bytes [0..8000] from A, [8001...16000] from B

– Alternative: Erasure Codes

– Gets into data-oriented networking (big in research now)

47

BitTorrent: Overview

• Swarming:
– Join: contact centralized “tracker” server, get a list

of peers.

– Publish: Contact (or run) a tracker server.

– Search: Out-of-band. E.g., use Google to find a
tracker for the file you want.

– Fetch: Download chunks of the file from your
peers. Upload chunks you have to them.

• Big differences from Napster:
– Chunk based downloading (sound familiar? :)

– “few large files” focus 48

BitTorrent

• Periodically get list of peers from
tracker

• More often:

– Ask each peer for what chunks it has

• (Or have them update you)

• Request chunks from several peers at a
time

• Peers will start downloading from you

• BT has some machinery to try to bias
46

49

BitTorrent: Publish/Join
Tracker

50

BitTorrent: Fetch

51

BitTorrent: Summary

• Pros:
– Works reasonably well in practice

– Gives peers incentive to share resources; avoids
freeloaders

• Cons:

– Central tracker server needed to bootstrap swarm

– (Tracker is a design choice, not a requirement, as
you know from your projects. Modern BitTorrent
can also use a DHT to locate peers. But
approach still needs a “search” mechanism)

P2P Challenges

• Trust!

• Difficulty of doing “rich” search in p2p

• Lots of unreliable nodes

• Trust:

– Freeloading (many filesharing systems)

– Corrupting files (the RIAA, etc.)

– Malice and cheating (p2p gaming)
52

53

The limits of search:

A Peer-to-peer Google?
• Complex intersection queries (“the” + “who”)

– Billions of hits for each term alone

• Sophisticated ranking

– Must compare many results before returning a

subset to user

• Very, very hard for a DHT / p2p system

– Need high inter-node bandwidth

– (This is exactly what Google does - massive

clusters)

• But maybe many file sharing queries are okay... 54

Writable, persistent p2p

• Do you trust your data to 100,000 monkeys?

• Node availability hurts

– Ex: Store 5 copies of data on different nodes

– When someone goes away, you must replicate the
data they held

– Hard drives are *huge*, but cable modem upload
bandwidth is tiny - perhaps 10 Gbytes/day

– Takes many days to upload contents of 200GB
hard drive. Very expensive leave/replication
situation!

55

What!s out there?

Central Flood Super-

node

flood

Route

Whole

File

Napster Gnutella Freenet

Chunk

Based

BitTorrent KaZaA

(bytes,

not

chunks)

DHTs

eDonkey

2000

56

P2P: Summary

• Many different styles; remember pros and cons of
each

– centralized, flooding, swarming, unstructured and structured
routing

• Lessons learned:

– Single points of failure are bad

– Flooding messages to everyone is bad

– Underlying network topology is important

– Not all nodes are equal

– Need incentives to discourage freeloading

– Privacy and security are important

– Structure can provide theoretical bounds and guarantees

Extra Slides

58

KaZaA: Usage Patterns

• KaZaA is more than

one workload!

– Many files < 10MB

(e.g., Audio Files)

– Many files > 100MB

(e.g., Movies)

from Gummadi et al., SOSP 2003

59

KaZaA: Usage Patterns (2)

• KaZaA is not Zipf!

– FileSharing:

“Request-once”

– Web: “Request-

repeatedly”

from Gummadi et al., SOSP 2003

60

KaZaA: Usage Patterns (3)

• What we saw:

– A few big files consume most of the bandwidth

– Many files are fetched once per client but still very popular

• Solution?

– Caching!

from Gummadi et al., SOSP 2003

61

Freenet: History

• In 1999, I. Clarke started the Freenet
project

• Basic Idea:
– Employ Internet-like routing on the overlay

network to publish and locate files

• Addition goals:

– Provide anonymity and security

– Make censorship difficult

62

Freenet: Overview

• Routed Queries:
– Join: on startup, client contacts a few other

nodes it knows about; gets a unique node id

– Publish: route file contents toward the file id. File
is stored at node with id closest to file id

– Search: route query for file id toward the closest
node id

– Fetch: when query reaches a node containing
file id, it returns the file to the sender

63

Freenet: Routing Tables
• id – file identifier (e.g., hash of file)

• next_hop – another node that stores the file id

• file – file identified by id being stored on the local node

• Forwarding of query for file id
– If file id stored locally, then stop

• Forward data back to upstream requestor

– If not, search for the “closest” id in the table, and
forward the message to the corresponding
next_hop

– If data is not found, failure is reported back
• Requestor then tries next closest match in routing

table

id next_hop file

…
…

64

Freenet: Routing

 4 n1 f4
12 n2 f12
 5 n3

 9 n3 f9

 3 n1 f3
14 n4 f14
 5 n3

14 n5 f14
13 n2 f13
 3 n6

n1 n2

n3

n4

 4 n1 f4
10 n5 f10
 8 n6

n5

query(10)

1

2

3

4

4’

5

65

Freenet: Routing Properties

• “Close” file ids tend to be stored on the same
node

– Why? Publications of similar file ids route toward
the same place

• Network tend to be a “small world”
– Small number of nodes have large number of

neighbors (i.e., ~ “six-degrees of separation”)

• Consequence:
– Most queries only traverse a small number of

hops to find the file

66

Freenet: Anonymity & Security

• Anonymity

– Randomly modify source of packet as it traverses the
network

– Can use “mix-nets” or onion-routing

• Security & Censorship resistance

– No constraints on how to choose ids for files => easy to
have to files collide, creating “denial of service” (censorship)

– Solution: have a id type that requires a private key signature
that is verified when updating the file

– Cache file on the reverse path of queries/publications =>
attempt to “replace” file with bogus data will just cause the
file to be replicated more!

67

Freenet: Discussion

• Pros:
– Intelligent routing makes queries relatively short

– Search scope small (only nodes along search
path involved); no flooding

– Anonymity properties may give you “plausible
deniability”

• Cons:
– Still no provable guarantees!

– Anonymity features make it hard to measure,
debug

68

BitTorrent: Sharing Strategy

• Employ “Tit-for-tat” sharing strategy
– A is downloading from some other people

• A will let the fastest N of those download from him

– Be optimistic: occasionally let freeloaders
download

• Otherwise no one would ever start!

• Also allows you to discover better peers to download
from when they reciprocate

– Let N peop

• Goal: Pareto Efficiency
– Game Theory: “No change can make anyone

better off without making others worse off”

