

- E.g., Map name \rightarrow IP address
- Scale to many users over a large area
- Scale to many updates

Obvious Solutions (1)

Why not centralize DNS?

- Single point of failure
- \cdot Traffic volume
- Distant centralized database
- Single point of update

•Doesn't *scale!*

Lecture 13

Obvious Solutions (2)

Why not use /etc/hosts?

- ·Original Name to Address Mapping
- Flat namespace
- -/etc/hosts
- SRI kept main copy
- Downloaded regularly
- •Mid 80's this became untenable. Why?
- ·Count of hosts was increasing: machine per domain \rightarrow machine per user
- Many more downloads
- Many more updates

/etc/hosts still exists.

8

Domain Name System Goals

15-441 @ 2008

- Basically a wide-area distributed database (The biggest in the world!)
- Scalability
- Decentralized maintenance
- Robustness
- •Global scope
 - Names mean the same thing everywhere
- $\boldsymbol{\cdot} \text{Don't}$ need all of ACID
 - Atomicity
 - Strong consistency
- Do need: distributed update/query & Performance

Programmer's View of DNS

15-441 @ 2008

• Conceptually, programmers can view the DNS database as a collection of millions of *host entry structures*:

/* DNS host entry s	ructure */	
<pre>struct hostent {</pre>		
char *h_name;	<pre>/* official domain nam</pre>	e of host */
char **h_alias	es; /* null-terminated arr	ay of domain names */
int h_addrtyp	; /* host address type (AF_INET) */
int h_length;	<pre>/* length of an addres</pre>	s, in bytes */
char **h_addr_	.ist; /* null-termed array o	f in_addr structs */
};		

- in_addr is a struct consisting of 4-byte IP addr
- Functions for retrieving host entries from DNS:
 - -gethostbyname: query key is a DNS host name.
 - -gethostbyaddr: query key is an IP address.

5

Lecture 13

DNS Message Format

Î	Identification	Flags
12 bytes	No. of Questions	No. of Answer RRs
Ļ	No. of Authority RRs	No. of Additional RRs
Name, type fields for a query	Questions (variable	number of answers)
RRs in response to query	Answers (variable numb	per of resource records)
Records for authoritative	→ Authority (variable num)	per of resource records)
servers Additional "helpful info that	→ Additional Info (variable nu	Imber of resource records)
may be used	15-441 © 2008	

DNS Header Fields

- Identification
 - Used to match up request/response

• Flags

Lecture 13

- -1-bit to mark query or response
- -1-bit to mark authoritative or not
- -1-bit to request recursive resolution
- -1-bit to indicate support for recursive resolution

DNS Records

RR format: (class, name, value, type, ttl)

- DB contains tuples called resource records (RRs)
 - Classes = Internet (IN), Chaosnet (CH), etc.
 - Each class defines value associated with type

For	"IN"	cl	ass:
		•	Туре

- name is hostname
- value is IP address
- Type=NS

Type=A

- **name** is domain (e.g. foo.com)
- value is name of authoritative name server for this domain

VDE=CNAME

- name is an alias name for
- some "canonical" name
- value is canonical name

Type=MX

 value is hostname of mailserver associated with name

Properties of DNS Host Entries

15-441 @ 2008


Different kinds of mappings are possible:

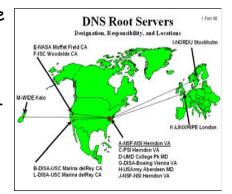
- •1-1 mapping between domain name and IP addr: provolone.crcl.cs.cmu.edu maps to 128.2.218.81
- Multiple domain names maps to the same IP addr: www.scs.cmu.edu and www.cs.cmu.edu both map to 128.2.203.164
- Single domain name maps to multiple IP addresses: aol.com and www.aol.com map to multiple IP addrs.
- Some valid domain names don't map to any IP addr: crcl.cs.cmu.edu doesn't have a host

Lecture 13

11

DNS Design: Hierarchy Definitions

DNS Design: Cont.


- •Zones are created by convincing owner node to create/delegate a subzone
 - Records within zone stored in multiple redundant name servers
 - Primary/master name server updated manually
 - Secondary/redundant servers updated by zone transfer of name space
 - Zone transfer is a bulk transfer of the "configuration" of a DNS server - uses TCP to ensure reliability
- •Example:
 - CS.CMU.EDU created by CMU.EDU admins
 - Who creates CMU.EDU or .EDU?

DNS: Root Name Servers

DNS Design: Zone Definitions

- Responsible for "root" zone
- 13 root name servers
 - Currently {a-m}.root-servers.net
- Local name servers contact root servers when they cannot resolve a name
- Why 13?

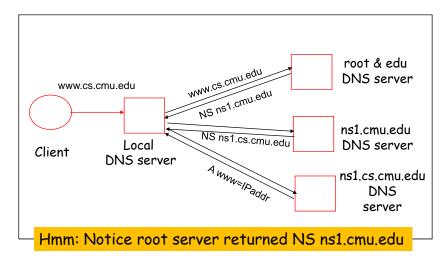
Lecture 13

Not really 13!

So Far

- Database structure
 - Hierarchy of labels x.y.z
 - Organized into zones
- -Zones have nameservers (notice plural!)
- Database layout
 - Records which map names→names,
 - names→ip,
 - etc.

Lecture 13


•Programmer API: gethostbyname, ...

Servers/Resolvers

- Each host has a resolver
 - Typically a library that applications can link to
 - Local name servers hand-configured (or DHCP) (e.g. /etc/resolv.conf)
- Name servers
 - Either responsible for some zone or ...
 - -Local servers
 - $\boldsymbol{\cdot}$ Do lookup of distant host names for local hosts
 - $\cdot\,$ Typically answer queries about local zone

Typical Resolution

15-441 @ 2008

19

Lecture 13

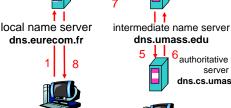
Typical Resolution

- Steps for resolving www.cmu.edu
 - Application calls gethostbyname() (RESOLVER)
 - Resolver contacts local name server (S_1)
 - S_1 queries root server (S_2) for (www.cmu.edu)
 - S_2 returns NS record for cmu.edu (S_3)
 - What about A record for S₃?
 - This is what the additional info section is for (PREFETCHING)
 - S₁ queries S₃ for <u>www.cmu.edu</u>
 - S₃ returns A record for www.cmu.edu
- ·Can return multiple A records \rightarrow What does this mean?

How to manage workload?

15-441 @ 2008

- Does root nameserver do recursive lookups?
- •What about other zones?
- What about imbalance in popularity?
 - -.com versus .dj
 - google.com versus bleu.crcl.cs.cmu.edu?
- · How do we scale guery workload?


Lookup Methods

- Server goes out and searches for more info
- Only returns final answer or "not found"

Iterative query:

- Server responds with as much as it knows.
- "I don't know this name, but ask this server"

dns.umass.edu 5 6_{authoritative} name server dns.cs.umass.edu

22

iterated query

requesting host aia.cs.umass.edu surf.eurecom.fr

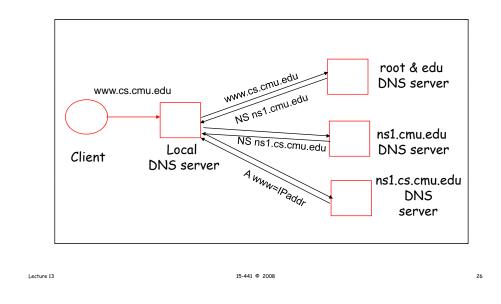
root name server

Workload impact on choice?

Root/distant server does iterative

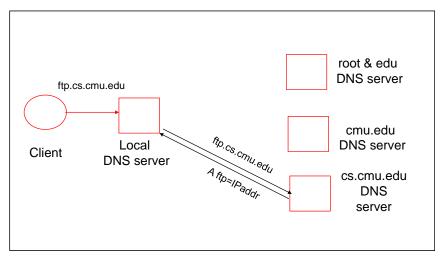
 Local server typically does recursive 15-441 © 2008 Lecture 13

Workload and Caching


- DNS responses are cached
- Quick response for repeated translations
- Other queries may reuse some parts of lookup
 - E.g., NS records for domains
- DNS negative gueries are cached
- Don't have to repeat past mistakes
- E.g., misspellings, search strings in resolv.conf
- How do you handle updates?

Lecture 13

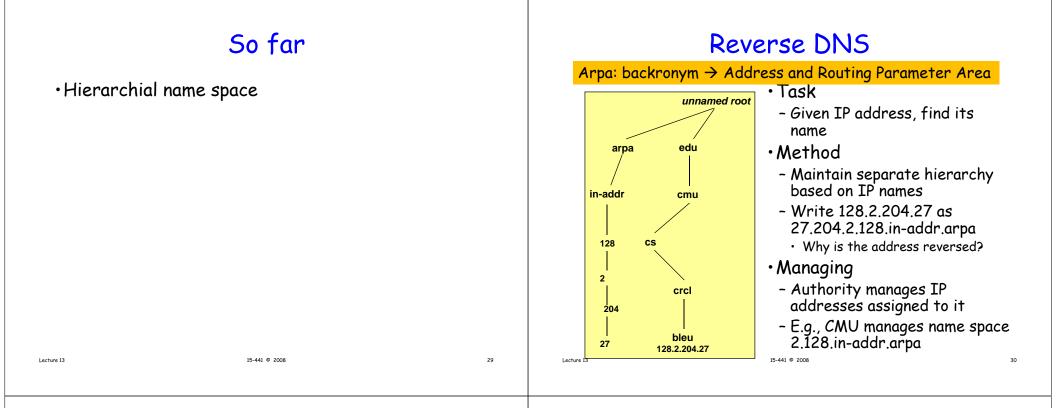
Workload and Caching


- •DNS responses are cached
 - Quick response for repeated translations
 - Other queries may reuse some parts of lookup
 - $\boldsymbol{\cdot}$ E.g., NS records for domains
- ·DNS negative queries are cached
 - Don't have to repeat past mistakes
 - E.g., misspellings, search strings in resolv.conf
- ·Cached data periodically times out
 - Lifetime (TTL) of data controlled by owner of data
 - TTL passed with every record

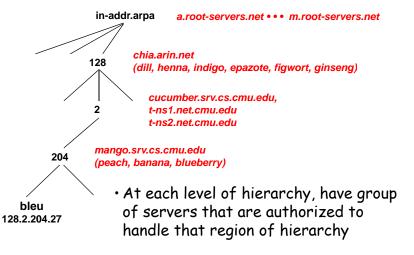
Typical Resolution

Subsequent Lookup Example

15-441 @ 2008



Reliability


- •DNS servers are replicated
 - Name service available if \geq one replica is up
 - Queries can be load balanced between replicas
- \cdot UDP used for queries
 - Need reliability \rightarrow must implement this on top of UDP!
- Why not just use TCP?
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Same identifier for all queries
 - Don't care which server responds

Lecture 13

27

.arpa Name Server Hierarchy

Prefetching

- •Name servers can add additional data to response
- Why would they?

Lecture 13

Prefetching

- $\boldsymbol{\cdot}$ Name servers can add additional data to response
- Why would they?
- Typically used for prefetching
 - CNAME/MX/NS typically point to another host name
 - Responses include address of host referred to in "additional section"

Mail Addresses

- MX records point to mail exchanger for a name - E.g. cmu.edu. 2590 IN MX 10 CMU-MX4.ANDREW.cmu.edu. cmu.edu. 2590 IN MX 10 CMU-MX5.ANDREW.cmu.edu.
- Addition of MX record type proved to be a challenge
- How to get mail programs to lookup MX record for mail delivery?
- Needed critical mass of such mailers
- Could we add a new one now?

Lecture 13	15-441 © 2008	33	Lecture 13	15-441 € 2008	34
	Outline			Root Zone	
•DNS Desig	n			Top Level Domains (gTLD) = .com, .net, .org, e Code Top Level Domain (ccTLD = .us, .ca, .fi, .uk, e)
•DNS Toda	/		cover g	rver ({a-m}.root-servers.net) als TLD domains In root servers was growing quic	
			- Moving clearly	g.com, .net, .org off root serve necessary to reduce load lone Aug 2000	•
			- How si • On load	ignificant an effect would this ł	nave?
Lecture 13	15-441 © 2008	35	Lecture 13	15-441 © 2008	36

qTLDs

3			_
 Unsponsored .com, .edu, .gov, .mil, .net, .org .biz → businesses .info → general info .name → individuals Sponsored (controlled by a particular association) .aero → air-transport industry .cat → catalan related .coop → bu Is there anything special about .com? .jobs → jol Is there anything .goldstein as a gTLD? .pro → accountants, lawyers, and physicians .travel → travel industry Starting up .mobi → mobile phone targeted domains .post → postal .tel → telephone related Proposed .asia, .cym, .geo, .kid, .mail, .sco, .web, .xxx Whatever you want! 	37	registr - Clear - Large new c	rk Solutions (NSI) used to handle all bations, root servers, etc by not the democratic (Internet) way e number of registrars that can create domains → However NSI still handles A server

Measurements of DNS

- •No centralized caching per site
 - Each machine runs own caching local server
 - Why is this a problem?
 - How many hosts do we need to share cache? \rightarrow recent studies suggest 10-20 hosts
- •"Hit rate for DNS:1 (#DNS/#connections)→80%
- Is this good or bad?
- ·Lower TTLs for A records does not affect performance
- DNS performance really relies more on NS-record caching Lecture 13

Measurements of DNS

New Registrars

- •No centralized caching per site
 - Each machine runs own caching local server
 - Why is this a problem?
 - How many hosts do we need to share cache? \rightarrow recent studies suggest 10-20 hosts
- "Hit rate for DNS:1 (#DNS/#connections)→80%
 - Is this good or bad?
 - Most Internet traffic was Web with HTTP 1.0
 - What does a typical page look like? \rightarrow average of 4-5 imbedded objects \rightarrow needs 4-5 transfers
 - This alone accounts for 80% hit rate!
- ·Lower TTLs for A records does not affect performance
- ·DNS performance really relies more on NS-record caching Lecture 13 15-441 @ 2008

Tracing Hierarchy (1)

- Dig Program
 - Allows querying of DNS system
 - Use flags to find name server (NS)
 - Disable recursion so that operates one step at a time

unix> dig +no	recurse @a.roo	ot-serve	ers.net NS kittyhawk.cmcl.cs.cmu.edu
lone			
,, HORITY			
edu.		NS	L3.NSTLD.COM.
edu.	172800 IN	NS	D3.NSTLD.COM.
edu.	172800 IN		A3.NSTLD.COM.
edu.	172800 IN	Type	E3.NSTLD.COM.
edu.	172800 IN	NS	C3.NSTLD.COM.
edu.	172800 IN	NS	F3.NSTLD COM
edu.	172 <mark>900 IN</mark>	NS	G3.NS ⁻ Value
edu.	172 Class	NS	B3.NSTLD.COM.
edu.	או טט <mark>82</mark> 81	NS	M3.NSTLD.COM.

- All .edu names handled by set of servers $_{\scriptscriptstyle 15-441 \ \circ \ 2008}$

Tracing Hierarchy (3 & 4)

•4 servers handle CMU CS names

unix> dig +nore	curse @t-ns1.ne	et.cmu	.edu NS kittyhawk.cmcl.cs.cmu.edu
;; AUTHORITY S	ECTION:		
cs.cmu.edu.	86400 IN	NS	MANGO.SRV.cs.cmu.edu.
cs.cmu.edu.	86400 IN	NS	PEACH.SRV.cs.cmu.edu.
cs.cmu.edu.	86400 IN	NS	BANANA.SRV.cs.cmu.edu.
cs.cmu.edu.	86400 IN	NS	BLUEBERRY.SRV.cs.cmu.edu.

•Quasar is master NS for this zone

unix>dig +norecurse @blueberry.srv.cs.cmu.edu NS kittyhawk.cmcl.cs.cmu.edu

;; AUTHORITY SECTION: cs.cmu.edu. 300 IN SOA QUASAR.FAC.cs.cmu.edu.

Lecture 13

43

41

Tracing Hierarchy (2)

• 3 servers handle CMU names

;; AUTHORIT\	SECTION:		
cmu.edu.	172800 IN	NS	CUCUMBER.SRV.cs.cmu.edu.
cmu.edu.	172800 IN	NS	T-NS1.NET.cmu.edu.
cmu.edu.	172800 IN	NS	T-NS2.NET.cmu.edu.

Lecture 13

15-441 © 2008

DNS (Summary)

- Motivations \rightarrow large distributed database
 - Scalability
 - Independent update
 - -Robustness
- ·Hierarchical database structure
- -Zones

Lecture 13

- How lookups are done
- ·Caching/prefetching and TTLs
- Reverse name lookup
- What are the steps to creating your own domain?