
Crashes and Recovery

Write-ahead logging

Announcements

•

Exams back at the end of class
•

Project 2, part 1 grades
–

tags/part1/grades.txt

Last time

•

Transactions and distributed transactions
–

The ACID properties

•

Isolation with 2-phase locking
–

Needed an atomic commit step, at the end

•

2-phase commit
–

voting phase

–

commit phase

2-phase commit

canCommit?

Yes

doCommit

haveCommitted

Coordinator Participant

participant not allowed to cause an abort after it says it canCommit

“committed”

“prepared”

“done”

“uncertain”
(objects still
locked)

“prepared”
(persistence)

“committed”

Failure model

•

Network is unreliable
•

Servers can fail
–

But their disks don’t fail

–

Can recover state

Today: Crashes and recovery

•

Goals: Recover state after crash
–

Committed transactions are not lost

–

Non-committed transactions either continued
or aborted

–

Low overhead
•

Plan:
–

Consider recovery of local system

–

Then consider role in distributed systems

Write-ahead logging / Journaling

•

Keep a separate log of all operations
–

Transaction begin, commit, abort

–

All updates
•

A transaction’s operations are provisional
until commit is logged to disk
–

The log records the consistent state of the
system

–

Disk writes of single pages are usually atomic

begin/commit/abort

records

•

Log Sequence Number (LSN)
–

Usually implicit, the address of the first-byte of
the log entry

•

LSN of previous record for transaction
–

Linked list of log records for each transaction

•

Transaction ID
•

Operation type

update

records

•

Need all information to undo and redo the
update
–

prevLSN

+ xID

+ opType

as before

–

The update itself, e.g.:
•

the update location (usually pageID, offset, length)

•

old-value
•

new-value

xId

= begin(); // suppose xId

<-

42
src.bal

-= 20;
dest.bal

+= 20;
commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100
11

10

dest.bal: 3
14

xId

= begin(); // suppose xId

<-

42
src.bal

-= 20;
dest.bal

+= 20;
commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100
11

10

dest.bal: 3
14

42: prevLSN

= 780

prevLSN: 0
xId: 42
type: begin

780

xId

= begin(); // suppose xId

<-

42
src.bal

-= 20;
dest.bal

+= 20;
commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100
11

10

dest.bal: 3
14

42: prevLSN

= 860

prevLSN: 0
xId: 42
type: begin

780

src.bal: 80
11

11: firstLSN

= 860, lastLSN

= 860

prevLSN: 780
xId: 42
type: update
page:

11
offset:

10
length:

4
old-val:

100
new-val:

80

860
…

src.bal

xId

= begin(); // suppose xId

<-

42
src.bal

-= 20;
dest.bal

+= 20;
commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100
11

10

dest.bal: 3
14

42: prevLSN

= 902

prevLSN: 0
xId: 42
type: begin

780

src.bal: 80
11

11: firstLSN

= 860, lastLSN

= 860
14: firstLSN

= 902, lastLSN

= 902

prevLSN: 780
xId: 42
type: update
page:

11
offset:

10
length:

4
old-val:

100
new-val:

80

860
…

src.bal

…

prevLSN: 860
xId: 42
type: update
page:

14
offset:

10
length:

4
old-val:

3
new-val:

23

902

dest.bal

dest.bal: 23
14

xId

= begin(); // suppose xId

<-

42
src.bal

-= 20;
dest.bal

+= 20;
commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100
11

10

dest.bal: 3
14

prevLSN: 0
xId: 42
type: begin

780

src.bal: 80
11

11: firstLSN

= 860, lastLSN

= 860
14: firstLSN

= 902, lastLSN

= 902

prevLSN: 780
xId: 42
type: update
page:

11
offset:

10
length:

4
old-val:

100
new-val:

80

860
…

src.bal

…

prevLSN: 860
xId: 42
type: update
page:

14
offset:

10
length:

4
old-val:

3
new-val:

23

902

dest.bal

dest.bal: 23
14

prevLSN: 902
xId: 42
type: commit

960m
us

t f
lu

sh
 th

e
lo

g
to

 d
is

k!

no
n-

lo
g

pa
ge

s
m

ay
 re

m
ai

n
in

 m
em

or
y

The tail of the log

•

The tail of the log can be kept in memory
until a transaction commits
–

…or a buffer page is flushed to disk

Recovering from simple failures

•

e.g., system crash
–

For now, assume we can read the log

•

“Analyze” the log
•

Redo all (usually) transactions (forward)
–

Repeating history!

–

Use new-value in byte-level update records
•

Undo uncommitted transactions
(backward)
–

Use old-value in byte-level update records

Why redo all operations?

•

(Even the loser transactions)
•

Interaction with concurrency control
–

Bring system back to a former state

•

Generalizes to logical operations
–

Any operation with undo and redo operations

–

Can be much faster than byte-level logging

The performance of WAL

•

Problems:
–

Must write disk twice?

•

Not always
–

For byte-level update logging, must know old
value for the update record

•

Writing the log is sequential
–

Might actually improve performance

•

Can acknowledge a write/commit as soon as the
log is written

Improvements to this WAL

•

Store LSN of last write on each data page
–

Can avoid unnecessary redoes

•

Log checkpoint records
–

Flush buffer cache? Record which pages are
in memory?

•

Log recovery actions (CLR)
–

Speeds up recovery from repeated failures

•

Ordered / metadata-only logging
–

Avoids needing to save old-value of files

Checkpoint records

•

Can start analysis with last checkpoint
•

Records:
–

Table of active transactions

–

Table of dirty pages in memory
•

And the earliest LSN that might have affected them

last checkpoint

earliest LSN of dirty page

earliest LSN of active transaction

Recovering 2-phase commit

•

Easy: just log the state-changes
–

Participants:

•

prepared, uncertain, committed/aborted
–

Coordinator:

•

prepared, committed/aborted, done
–

The messages are idempotent!

•

In recovery, resend whatever message was next
•

If coordinator and uncommitted: doAbort

What about other failures?

•

What if the log fails?
–

Log and data on different disks?

–

Mirror the log?
•

What if the machine room floods?
–

Mirror the log elsewhere

End-to-end solutions?

•

WAL can recover the state of a crashed
server
–

But we are also building toward end-to-end
solutions to handle failures

•

Desirable: fault-tolerance
•

Redundancy/Replication!
–

Semantics of updating very complicated

•

Consensus, consistency, etc
–

Hard to achieve transparency

	Crashes and Recovery
	Announcements
	Last time
	2-phase commit
	Failure model
	Today: Crashes and recovery
	Write-ahead logging / Journaling
	begin/commit/abort records
	update records
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	The tail of the log
	Recovering from simple failures
	Why redo all operations?
	The performance of WAL
	Improvements to this WAL
	Checkpoint records
	Recovering 2-phase commit
	What about other failures?
	End-to-end solutions?

